Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 322 (5900): 399-403

Copyright © 2008 by the American Association for the Advancement of Science

From Signals to Patterns: Space, Time, and Mathematics in Developmental Biology

Julian Lewis

Abstract: We now have a wealth of information about the molecular signals that act on cells in embryos, but how do the control systems based on these signals generate pattern and govern the timing of developmental events? Here, I discuss four examples to show how mathematical modeling and quantitative experimentation can give some useful answers. The examples concern the Bicoid gradient in the early Drosophila embryo, the dorsoventral patterning of a frog embryo by bone morphogenetic protein signals, the auxin-mediated patterning of plant meristems, and the Notch-dependent somite segmentation clock.

Vertebrate Development Laboratory, Cancer Research UK London Research Institute, London WC2A 3PX, UK.

A diffusion-based neurite length-sensing mechanism involved in neuronal symmetry breaking.
M. Toriyama, Y. Sakumura, T. Shimada, S. Ishii, and N. Inagaki (2014)
Mol Syst Biol 6, 394
   Abstract »    Full Text »    PDF »
A linear-encoding model explains the variability of the target morphology in regeneration.
D. Lobo, M. Solano, G. A. Bubenik, and M. Levin (2014)
J R Soc Interface 11, 20130918
   Abstract »    Full Text »    PDF »
How Cells Know Where They Are.
A. D. Lander (2013)
Science 339, 923-927
   Abstract »    Full Text »    PDF »
Strong inter-population cooperation leads to partner intermixing in microbial communities.
B. Momeni, K. A. Brileya, M. W. Fields, and W. Shou (2013)
eLife Sci 2, e00230
   Abstract »    Full Text »    PDF »
Cellular resolution models for even skipped regulation in the entire Drosophila embryo.
G. R. Ilsley, J. Fisher, R. Apweiler, A. H. DePace, and N. M. Luscombe (2013)
eLife Sci 2, e00522
   Abstract »    Full Text »    PDF »
Towards an integrated experimental-theoretical approach for assessing the mechanistic basis of hair and feather morphogenesis.
K. J. Painter, G. S. Hunt, K. L. Wells, J. A. Johansson, and D. J. Headon (2012)
Interface Focus 2, 433-450
   Abstract »    Full Text »    PDF »
Computational Approaches to Developmental Patterning.
L. G. Morelli, K. Uriu, S. Ares, and A. C. Oates (2012)
Science 336, 187-191
   Abstract »    Full Text »    PDF »
Model for the regulation of Arabidopsis thaliana leaf margin development.
G. D. Bilsborough, A. Runions, M. Barkoulas, H. W. Jenkins, A. Hasson, C. Galinha, P. Laufs, A. Hay, P. Prusinkiewicz, and M. Tsiantis (2011)
PNAS 108, 3424-3429
   Abstract »    Full Text »    PDF »
The repression of Notch signaling occurs via the destabilization of mastermind-like 1 by Mesp2 and is essential for somitogenesis.
N. Sasaki, M. Kiso, M. Kitagawa, and Y. Saga (2011)
Development 138, 55-64
   Abstract »    Full Text »    PDF »
BMPs and FGFs target Notch signalling via jagged 2 to regulate tooth morphogenesis and cytodifferentiation.
T. A. Mitsiadis, D. Graf, H. Luder, T. Gridley, and G. Bluteau (2010)
Development 137, 3025-3035
   Abstract »    Full Text »    PDF »
How a Plant Builds Leaves.
S. A. Braybrook and C. Kuhlemeier (2010)
PLANT CELL 22, 1006-1018
   Abstract »    Full Text »    PDF »
Rbpj Cell Autonomous Regulation of Retinal Ganglion Cell and Cone Photoreceptor Fates in the Mouse Retina.
A. N. Riesenberg, Z. Liu, R. Kopan, and N. L. Brown (2009)
J. Neurosci. 29, 12865-12877
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882