Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 322 (5902): 709-713

Copyright © 2008 by the American Association for the Advancement of Science

Structure and Molecular Mechanism of a Nucleobase–Cation–Symport-1 Family Transporter

Simone Weyand,1,2,3* Tatsuro Shimamura,2,3,4* Shunsuke Yajima,2,3*{dagger} Shun'ichi Suzuki,5*{ddagger} Osman Mirza,2*§ Kuakarun Krusong,2|| Elisabeth P. Carpenter,1,2 Nicholas G. Rutherford,5 Jonathan M. Hadden,5 John O'Reilly,5 Pikyee Ma,5 Massoud Saidijam,5,6 Simon G. Patching,5 Ryan J. Hope,5 Halina T. Norbertczak,5 Peter C. J. Roach,5 So Iwata,1,2,3,4,7 Peter J. F. Henderson,5 Alexander D. Cameron1,2,3

Abstract: The nucleobase–cation–symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, 10 of which are arranged in two inverted repeats of five helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved, showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine transporter LeuTAa and the galactose transporter vSGLT reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronized by the inverted repeat helices 3 and 8, providing the structural basis of the alternating access model for membrane transport.

1 Membrane Protein Laboratory, Diamond Light Source Limited, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK.
2 Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK.
3 Human Receptor Crystallography Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
4 Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-Ku, Kyoto 606-8501, Japan.
5 Astbury Centre for Structural Molecular Biology, Institute for Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK.
6 School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran.
7 Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045 Japan.

* These authors contributed equally to this work

{dagger} Present address: Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan.

{ddagger} Present address: Aminosciences Laboratories, Ajinomoto Company Incorporated, 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan.

§ Present address: Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark.

|| Present address: Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Patumwan, Bangkok 10330, Thailand.

To whom correspondence should be addressed. E-mail: s.iwata{at}imperial.ac.uk (S.I.); p.j.f.henderson{at}leeds.ac.uk (P.J.F.H.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Quality control: Quality control at the plasma membrane: One mechanism does not fit all.
M. Babst (2014)
J. Cell Biol. 205, 11-20
   Abstract »    Full Text »    PDF »
How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.
A. Penmatsa and E. Gouaux (2014)
J. Physiol. 592, 863-869
   Abstract »    Full Text »    PDF »
The Two Na+ Sites in the Human Serotonin Transporter Play Distinct Roles in the Ion Coupling and Electrogenicity of Transport.
B. Felts, A. B. Pramod, W. Sandtner, N. Burbach, S. Bulling, H. H. Sitte, and L. K. Henry (2014)
J. Biol. Chem. 289, 1825-1840
   Abstract »    Full Text »    PDF »
A L-Lysine Transporter of High Stereoselectivity of the Amino Acid-Polyamine-Organocation (APC) Superfamily: PRODUCTION, FUNCTIONAL CHARACTERIZATION, AND STRUCTURE MODELING.
J. Kaur, E. Olkhova, V. N. Malviya, E. Grell, and H. Michel (2014)
J. Biol. Chem. 289, 1377-1387
   Abstract »    Full Text »    PDF »
Functional identification and characterization of sodium binding sites in Na symporters.
D. D. F. Loo, X. Jiang, E. Gorraitz, B. A. Hirayama, and E. M. Wright (2013)
PNAS 110, E4557-E4566
   Abstract »    Full Text »    PDF »
Arginine oscillation explains Na+ independence in the substrate/product antiporter CaiT.
S. Kalayil, S. Schulze, and W. Kuhlbrandt (2013)
PNAS 110, 17296-17301
   Abstract »    Full Text »    PDF »
Structural Model of the Anion Exchanger 1 (SLC4A1) and Identification of Transmembrane Segments Forming the Transport Site.
D. Barneaud-Rocca, C. Etchebest, and H. Guizouarn (2013)
J. Biol. Chem. 288, 26372-26384
   Abstract »    Full Text »    PDF »
Chloride binding site of neurotransmitter sodium symporters.
A. K. Kantcheva, M. Quick, L. Shi, A.-M. L. Winther, S. Stolzenberg, H. Weinstein, J. A. Javitch, and P. Nissen (2013)
PNAS 110, 8489-8494
   Abstract »    Full Text »    PDF »
Transient formation of water-conducting states in membrane transporters.
J. Li, S. A. Shaikh, G. Enkavi, P.-C. Wen, Z. Huang, and E. Tajkhorshid (2013)
PNAS 110, 7696-7701
   Abstract »    Full Text »    PDF »
High Selectivity of the {gamma}-Aminobutyric Acid Transporter 2 (GAT-2, SLC6A13) Revealed by Structure-based Approach.
A. Schlessinger, M. B. Wittwer, A. Dahlin, N. Khuri, M. Bonomi, H. Fan, K. M. Giacomini, and A. Sali (2012)
J. Biol. Chem. 287, 37745-37756
   Abstract »    Full Text »    PDF »
Investigation of the sodium-binding sites in the sodium-coupled betaine transporter BetP.
K. Khafizov, C. Perez, C. Koshy, M. Quick, K. Fendler, C. Ziegler, and L. R. Forrest (2012)
PNAS 109, E3035-E3044
   Abstract »    Full Text »    PDF »
Modeling, Substrate Docking, and Mutational Analysis Identify Residues Essential for the Function and Specificity of a Eukaryotic Purine-Cytosine NCS1 Transporter.
E. Krypotou, V. Kosti, S. Amillis, V. Myrianthopoulos, E. Mikros, and G. Diallinas (2012)
J. Biol. Chem. 287, 36792-36803
   Abstract »    Full Text »    PDF »
Simulated annealing reveals the kinetic activity of SGLT1, a member of the LeuT structural family.
J.-P. Longpre, L. J. Sasseville, and J.-Y. Lapointe (2012)
J. Gen. Physiol. 140, 361-374
   Abstract »    Full Text »    PDF »
A Conformational Switch in a Partially Unwound Helix Selectively Determines the Pathway for Substrate Release from the Carnitine/{gamma}-Butyrobetaine Antiporter CaiT.
E. Zomot and I. Bahar (2012)
J. Biol. Chem. 287, 31823-31832
   Abstract »    Full Text »    PDF »
Inhibitors of Bacterial Efflux Pumps that also Inhibit Efflux Pumps of Cancer Cells.
L. AMARAL, G. SPENGLER, A. MARTINS, A. ARMADA, J. HANDZLIK, K. KIEC-KONONOWICZ, and J. MOLNAR (2012)
Anticancer Res 32, 2947-2957
   Abstract »    Full Text »    PDF »
Bridging the gap between structure and kinetics of human SGLT1.
M. Sala-Rabanal, B. A. Hirayama, D. D. F. Loo, V. Chaptal, J. Abramson, and E. M. Wright (2012)
Am J Physiol Cell Physiol 302, C1293-C1305
   Abstract »    Full Text »    PDF »
De Novo Pyrimidine Nucleotide Synthesis Mainly Occurs outside of Plastids, but a Previously Undiscovered Nucleobase Importer Provides Substrates for the Essential Salvage Pathway in Arabidopsis.
S. Witz, B. Jung, S. Furst, and T. Mohlmann (2012)
PLANT CELL 24, 1549-1559
   Abstract »    Full Text »    PDF »
An Acidic Amino Acid Transmembrane Helix 10 Residue Conserved in the Neurotransmitter:Sodium:Symporters Is Essential for the Formation of the Extracellular Gate of the {gamma}-Aminobutyric Acid (GABA) Transporter GAT-1.
A. Ben-Yona and B. I. Kanner (2012)
J. Biol. Chem. 287, 7159-7168
   Abstract »    Full Text »    PDF »
The Activity of 16 New Hydantoin Compounds on the Intrinsic and Overexpressed Efflux Pump System of Staphylococcus aureus.
A. DYMEK, A. ARMADA, J. HANDZLIK, M. VIVEIROS, G. SPENGLER, J. MOLNAR, K. KIEC-KONONOWICZ, and L. AMARAL (2012)
In Vivo 26, 223-229
   Abstract »    Full Text »    PDF »
Insights into transport mechanism from LeuT engineered to transport tryptophan.
C. L. Piscitelli and E. Gouaux (2012)
EMBO J. 31, 228-235
   Abstract »    Full Text »    PDF »
Mechanism of anion selectivity and stoichiometry of the Na+/I- symporter (NIS).
M. Paroder-Belenitsky, M. J. Maestas, O. Dohan, J. P. Nicola, A. Reyna-Neyra, A. Follenzi, E. Dadachova, S. Eskandari, L. M. Amzel, and N. Carrasco (2011)
PNAS 108, 17933-17938
   Abstract »    Full Text »    PDF »
Role of Asp187 and Gln190 in the Na+/proline symporter (PutP) of Escherichia coli.
A. Amin, T. Ando, S. Saijo, and I. Yamato (2011)
J. Biochem. 150, 395-402
   Abstract »    Full Text »    PDF »
A Conserved Asparagine Residue in Transmembrane Segment 1 (TM1) of Serotonin Transporter Dictates Chloride-coupled Neurotransmitter Transport.
L. K. Henry, H. Iwamoto, J. R. Field, K. Kaufmann, E. S. Dawson, M. T. Jacobs, C. Adams, B. Felts, I. Zdravkovic, V. Armstrong, et al. (2011)
J. Biol. Chem. 286, 30823-30836
   Abstract »    Full Text »    PDF »
Biological Activity of Twenty-three Hydantoin Derivatives on Intrinsic Efflux Pump System of Salmonella enterica serovar Enteritidis NCTC 13349.
L. MACHADO, G. SPENGLER, M. EVARISTO, J. HANDZLIK, J. MOLNAR, M. VIVEIROS, K. KIEC-KONONOWICZ, and L. AMARAL (2011)
In Vivo 25, 769-772
   Abstract »    Full Text »    PDF »
SLC6 Neurotransmitter Transporters: Structure, Function, and Regulation.
A. S. Kristensen, J. Andersen, T. N. Jorgensen, L. Sorensen, J. Eriksen, C. J. Loland, K. Stromgaard, and U. Gether (2011)
Pharmacol. Rev. 63, 585-640
   Abstract »    Full Text »    PDF »
Protonation of Glutamate 208 Induces the Release of Agmatine in an Outward-facing Conformation of an Arginine/Agmatine Antiporter.
E. Zomot and I. Bahar (2011)
J. Biol. Chem. 286, 19693-19701
   Abstract »    Full Text »    PDF »
Plant Sucrose Transporters from a Biophysical Point of View.
D. Geiger (2011)
Mol Plant 4, 395-406
   Abstract »    Full Text »    PDF »
Substrate specificity and ion coupling in the Na+/betaine symporter BetP.
C. Perez, C. Koshy, S. Ressl, S. Nicklisch, R. Kramer, and C. Ziegler (2011)
EMBO J. 30, 1221-1229
   Abstract »    Full Text »    PDF »
Biology of Human Sodium Glucose Transporters.
E. M. Wright, D. D. F. Loo, and B. A. Hirayama (2011)
Physiol Rev 91, 733-794
   Abstract »    Full Text »    PDF »
Molecular basis of substrate-induced permeation by an amino acid antiporter.
L. Kowalczyk, M. Ratera, A. Paladino, P. Bartoccioni, E. Errasti-Murugarren, E. Valencia, G. Portella, S. Bial, A. Zorzano, I. Fita, et al. (2011)
PNAS 108, 3935-3940
   Abstract »    Full Text »    PDF »
Structure-function activity of the human sodium-dependent multivitamin transporter: role of His115 and His254.
A. Ghosal and H. M. Said (2011)
Am J Physiol Cell Physiol 300, C97-C104
   Abstract »    Full Text »    PDF »
Rapid downregulation of the rat glutamine transporter SNAT3 by a caveolin-dependent trafficking mechanism in Xenopus laevis oocytes.
S. Balkrishna, A. Broer, A. Kingsland, and S. Broer (2010)
Am J Physiol Cell Physiol 299, C1047-C1057
   Abstract »    Full Text »    PDF »
Role of Transmembrane Domain 8 in Substrate Selectivity and Translocation of SteT, a Member of the L-Amino Acid Transporter (LAT) Family.
P. Bartoccioni, C. del Rio, M. Ratera, L. Kowalczyk, J. M. Baldwin, A. Zorzano, M. Quick, S. A. Baldwin, J. L. Vazquez-Ibar, and M. Palacin (2010)
J. Biol. Chem. 285, 28764-28776
   Abstract »    Full Text »    PDF »
Identification of a Receptor Subunit and Putative Ligand-Binding Residues Involved in the Bacillus megaterium QM B1551 Spore Germination Response to Glucose.
G. Christie, H. Gotzke, and C. R. Lowe (2010)
J. Bacteriol. 192, 4317-4326
   Abstract »    Full Text »    PDF »
Molecular Basis of Alternating Access Membrane Transport by the Sodium-Hydantoin Transporter Mhp1.
T. Shimamura, S. Weyand, O. Beckstein, N. G. Rutherford, J. M. Hadden, D. Sharples, M. S. P. Sansom, S. Iwata, P. J. F. Henderson, and A. D. Cameron (2010)
Science 328, 470-473
   Abstract »    Full Text »    PDF »
Transmembrane Domain 6 of the Human Serotonin Transporter Contributes to an Aqueously Accessible Binding Pocket for Serotonin and the Psychostimulant 3,4-Methylene Dioxymethamphetamine.
J. R. Field, L. K. Henry, and R. D. Blakely (2010)
J. Biol. Chem. 285, 11270-11280
   Abstract »    Full Text »    PDF »
Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes.
J. A. Lundbaek, S. A. Collingwood, H. I. Ingolfsson, R. Kapoor, and O. S. Andersen (2010)
J R Soc Interface 7, 373-395
   Abstract »    Full Text »    PDF »
Ligand Effects on Cross-linking Support a Conformational Mechanism for Serotonin Transport.
Z. Tao, Y.-W. Zhang, A. Agyiri, and G. Rudnick (2009)
J. Biol. Chem. 284, 33807-33814
   Abstract »    Full Text »    PDF »
The Rocking Bundle: A Mechanism for Ion-Coupled Solute Flux by Symmetrical Transporters.
L. R. Forrest and G. Rudnick (2009)
Physiology 24, 377-386
   Abstract »    Full Text »    PDF »
Mutation of Asparagine 76 in the Center of Glutamine Transporter SNAT3 Modulates Substrate-induced Conductances and Na+ Binding.
S. Broer, H.-P. Schneider, A. Broer, and J. W. Deitmer (2009)
J. Biol. Chem. 284, 25823-25831
   Abstract »    Full Text »    PDF »
A Conserved Na+ Binding Site of the Sodium-coupled Neutral Amino Acid Transporter 2 (SNAT2).
Z. Zhang, T. Albers, H. L. Fiumera, A. Gameiro, and C. Grewer (2009)
J. Biol. Chem. 284, 25314-25323
   Abstract »    Full Text »    PDF »
A 3D structure model of the melibiose permease of Escherichia coli represents a distinctive fold for Na+ symporters.
M. S. Yousef and L. Guan (2009)
PNAS 106, 15291-15296
   Abstract »    Full Text »    PDF »
Role of Intramembrane Polar Residues in the YgfO Xanthine Permease: HIS-31 AND ASN-93 ARE CRUCIAL FOR AFFINITY AND SPECIFICITY, AND ASP-304 AND GLU-272 ARE IRREPLACEABLE.
E. Karena and S. Frillingos (2009)
J. Biol. Chem. 284, 24257-24268
   Abstract »    Full Text »    PDF »
Structure and Mechanism of a Na+-Independent Amino Acid Transporter.
P. L. Shaffer, A. Goehring, A. Shankaranarayanan, and E. Gouaux (2009)
Science 325, 1010-1014
   Abstract »    Full Text »    PDF »
An ab Initio Structural Model of a Nucleoside Permease Predicts Functionally Important Residues.
R. Valdes, S. Arastu-Kapur, S. M. Landfear, and U. Shinde (2009)
J. Biol. Chem. 284, 19067-19076
   Abstract »    Full Text »    PDF »
Substrate Binding Tunes Conformational Flexibility and Kinetic Stability of an Amino Acid Antiporter.
C. A. Bippes, A. Zeltina, F. Casagrande, M. Ratera, M. Palacin, D. J. Muller, and D. Fotiadis (2009)
J. Biol. Chem. 284, 18651-18663
   Abstract »    Full Text »    PDF »
Role of the glutamate 185 residue in proton translocation mediated by the proton-coupled folate transporter SLC46A1.
E. S. Unal, R. Zhao, and I. D. Goldman (2009)
Am J Physiol Cell Physiol 297, C66-C74
   Abstract »    Full Text »    PDF »
Substituted Cysteine Accessibility Method Analysis of Human Concentrative Nucleoside Transporter hCNT3 Reveals a Novel Discontinuous Region of Functional Importance within the CNT Family Motif (G/A)XKX3NEFVA(Y/M/F).
M. D. Slugoski, A. M. L. Ng, S. Y. M. Yao, C. C. Lin, R. Mulinta, C. E. Cass, S. A. Baldwin, and J. D. Young (2009)
J. Biol. Chem. 284, 17281-17292
   Abstract »    Full Text »    PDF »
Conserved Glutamate Residues Glu-343 and Glu-519 Provide Mechanistic Insights into Cation/Nucleoside Cotransport by Human Concentrative Nucleoside Transporter hCNT3.
M. D. Slugoski, K. M. Smith, A. M. L. Ng, S. Y. M. Yao, E. Karpinski, C. E. Cass, S. A. Baldwin, and J. D. Young (2009)
J. Biol. Chem. 284, 17266-17280
   Abstract »    Full Text »    PDF »
Structure and Mechanism of an Amino Acid Antiporter.
X. Gao, F. Lu, L. Zhou, S. Dang, L. Sun, X. Li, J. Wang, and Y. Shi (2009)
Science 324, 1565-1568
   Abstract »    Full Text »    PDF »
Transmembrane Domain 8 of the {gamma}-Aminobutyric Acid Transporter GAT-1 Lines a Cytoplasmic Accessibility Pathway into Its Binding Pocket.
A. Ben-Yona and B. I. Kanner (2009)
J. Biol. Chem. 284, 9727-9732
   Abstract »    Full Text »    PDF »
BIOCHEMISTRY: An Almost-Complete Movie.
G. Diallinas (2008)
Science 322, 1644-1645
   Abstract »    Full Text »    PDF »
A Competitive Inhibitor Traps LeuT in an Open-to-Out Conformation.
S. K. Singh, C. L. Piscitelli, A. Yamashita, and E. Gouaux (2008)
Science 322, 1655-1661
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882