Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 322 (5903): 923-929

Copyright © 2008 by the American Association for the Advancement of Science

Identification of SCF Ubiquitin Ligase Substrates by Global Protein Stability Profiling

Hsueh-Chi Sherry Yen, and Stephen J. Elledge*

Abstract: Ubiquitin-mediated proteolysis regulates all aspects of cellular function, and defects in this process are associated with human diseases. The limited number of identified ubiquitin ligase–substrate pairs is a major bottleneck in the ubiquitin field. We established and applied genetic technologies that combine global protein stability (GPS) profiling and genetic perturbation of E3 activity to screen for substrates of the Skp1–cullin–F-box (SCF) ubiquitin ligase in mammalian cells. Among the >350 potential substrates identified, we found most known SCF targets and many previously unknown substrates involved in cell cycle, apoptosis, and signaling pathways. Exploring cell cycle–stage stability, we found that several substrates used the SCF and other E3s in different cell cycle stages. Our results demonstrate the potential of these technologies as general platforms for the global discovery of E3-substrate regulatory networks.

Department of Genetics, Center for Genetics and Genomics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.

* To whom correspondence should be addressed. E-mail: selledge{at}genetics.med.harvard.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Mitochondrial trafficking and anchoring in neurons: New insight and implications.
Z.-H. Sheng (2014)
J. Cell Biol. 204, 1087-1098
   Abstract »    Full Text »    PDF »
A new regulatory pathway of mRNA export by an F-box protein, Mdm30.
G. Durairaj, S. Lahudkar, and S. R. Bhaumik (2014)
RNA 20, 133-142
   Abstract »    Full Text »    PDF »
Building and remodelling Cullin-RING E3 ubiquitin ligases.
J. R. Lydeard, B. A. Schulman, and J. W. Harper (2013)
EMBO Rep. 14, 1050-1061
   Abstract »    Full Text »    PDF »
High-throughput Analysis of in vivo Protein Stability.
I. Kim, C. R. Miller, D. L. Young, and S. Fields (2013)
Mol. Cell. Proteomics 12, 3370-3378
   Abstract »    Full Text »    PDF »
Ubiquitination site preferences in anaphase promoting complex/cyclosome (APC/C) substrates.
M. Min, U. Mayor, and C. Lindon (2013)
Open Bio 3, 130097
   Abstract »    Full Text »    PDF »
The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications.
P. Genschik, I. Sumara, and E. Lechner (2013)
EMBO J. 32, 2307-2320
   Abstract »    Full Text »    PDF »
Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport.
Y. Chen and Z.-H. Sheng (2013)
J. Cell Biol. 202, 351-364
   Abstract »    Full Text »    PDF »
Understanding Cullin-RING E3 Biology through Proteomics-based Substrate Identification.
J. W. Harper and M.-K. M. Tan (2012)
Mol. Cell. Proteomics 11, 1541-1550
   Abstract »    Full Text »    PDF »
SEL-10/Fbw7-dependent negative feedback regulation of LIN-45/Braf signaling in C. elegans via a conserved phosphodegron.
C. de la Cova and I. Greenwald (2012)
Genes & Dev. 26, 2524-2535
   Abstract »    Full Text »    PDF »
Determining Degradation and Synthesis Rates of Arabidopsis Proteins Using the Kinetics of Progressive 15N Labeling of Two-dimensional Gel-separated Protein Spots.
L. Li, C. J. Nelson, C. Solheim, J. Whelan, and A. H. Millar (2012)
Mol. Cell. Proteomics 11, M111.010025
   Abstract »    Full Text »    PDF »
Differential Diffusivity of Nodal and Lefty Underlies a Reaction-Diffusion Patterning System.
P. Muller, K. W. Rogers, B. M. Jordan, J. S. Lee, D. Robson, S. Ramanathan, and A. F. Schier (2012)
Science 336, 721-724
   Abstract »    Full Text »    PDF »
Ubiquitination of BST-2 Protein by HIV-1 Vpu Protein Does Not Require Lysine, Serine, or Threonine Residues within the BST-2 Cytoplasmic Domain.
J. K. Gustin, J. L. Douglas, Y. Bai, and A. V. Moses (2012)
J. Biol. Chem. 287, 14837-14850
   Abstract »    Full Text »    PDF »
E3Net: A System for Exploring E3-mediated Regulatory Networks of Cellular Functions.
Y. Han, H. Lee, J. C. Park, and G.-S. Yi (2012)
Mol. Cell. Proteomics 11, O111.014076
   Abstract »    Full Text »    PDF »
Agrobacterium Counteracts Host-Induced Degradation of Its Effector F-Box Protein.
S. Magori and V. Citovsky (2011)
Science Signaling 4, ra69
   Abstract »    Full Text »    PDF »
Mechanism of CRL4Cdt2, a PCNA-dependent E3 ubiquitin ligase.
C. G. Havens and J. C. Walter (2011)
Genes & Dev. 25, 1568-1582
   Abstract »    Full Text »    PDF »
Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate.
M. J. Emanuele, A. Ciccia, A. E. H. Elia, and S. J. Elledge (2011)
PNAS 108, 9845-9850
   Abstract »    Full Text »    PDF »
Ubiquitinated Proteome: Ready for Global?.
Y. Shi, P. Xu, and J. Qin (2011)
Mol. Cell. Proteomics 10, R110.006882
   Abstract »    Full Text »    PDF »
RBX1 (RING Box Protein 1) E3 Ubiquitin Ligase Is Required for Genomic Integrity by Modulating DNA Replication Licensing Proteins.
L. Jia, J. S. Bickel, J. Wu, M. A. Morgan, H. Li, J. Yang, X. Yu, R. C. Chan, and Y. Sun (2011)
J. Biol. Chem. 286, 3379-3386
   Abstract »    Full Text »    PDF »
Evolutionarily Conserved Role of Calcineurin in Phosphodegron-Dependent Degradation of Phosphodiesterase 4D.
H. Zhu, H. Y. Suk, R. Y. L. Yu, D. Brancho, O. Olabisi, T. T. C. Yang, X. Yang, J. Zhang, M. Moussaif, J. L. Durand, et al. (2010)
Mol. Cell. Biol. 30, 4379-4390
   Abstract »    Full Text »    PDF »
Small RING Finger Proteins RBX1 and RBX2 of SCF E3 Ubiquitin Ligases: The Role in Cancer and as Cancer Targets.
D. Wei and Y. Sun (2010)
Genes & Cancer 1, 700-707
   Abstract »    Full Text »    PDF »
The Fbw7/Human CDC4 Tumor Suppressor Targets Proproliferative Factor KLF5 for Ubiquitination and Degradation through Multiple Phosphodegron Motifs.
N. Liu, H. Li, S. Li, M. Shen, N. Xiao, Y. Chen, Y. Wang, W. Wang, R. Wang, Q. Wang, et al. (2010)
J. Biol. Chem. 285, 18858-18867
   Abstract »    Full Text »    PDF »
FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling.
S. Luke-Glaser, B. Luke, S. Grossi, and A. Constantinou (2010)
EMBO J. 29, 795-805
   Abstract »    Full Text »    PDF »
Validation of SAG/RBX2/ROC2 E3 Ubiquitin Ligase as an Anticancer and Radiosensitizing Target.
L. Jia, J. Yang, X. Hao, M. Zheng, H. He, X. Xiong, L. Xu, and Y. Sun (2010)
Clin. Cancer Res. 16, 814-824
   Abstract »    Full Text »    PDF »
Cullin 1 Functions as a Centrosomal Suppressor of Centriole Multiplication by Regulating Polo-like Kinase 4 Protein Levels.
N. Korzeniewski, L. Zheng, R. Cuevas, J. Parry, P. Chatterjee, B. Anderton, A. Duensing, K. Munger, and S. Duensing (2009)
Cancer Res. 69, 6668-6675
   Abstract »    Full Text »    PDF »
ROC1/RBX1 E3 Ubiquitin Ligase Silencing Suppresses Tumor Cell Growth via Sequential Induction of G2-M Arrest, Apoptosis, and Senescence.
L. Jia, M. S. Soengas, and Y. Sun (2009)
Cancer Res. 69, 4974-4982
   Abstract »    Full Text »    PDF »
CELL BIOLOGY: Going Global on Ubiquitin.
C. Grabbe and I. Dikic (2008)
Science 322, 872-873
   Abstract »    Full Text »    PDF »
Global Protein Stability Profiling in Mammalian Cells.
H.-C. S. Yen, Q. Xu, D. M. Chou, Z. Zhao, and S. J. Elledge (2008)
Science 322, 918-923
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882