Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 322 (5906): 1395-1399

Copyright © 2008 by the American Association for the Advancement of Science

Absence of the SRC-2 Coactivator Results in a Glycogenopathy Resembling Von Gierke's Disease

Atul R. Chopra,1* Jean-Francois Louet,1* Pradip Saha,1 Jie An,4 Franco DeMayo,1 Jianming Xu,1 Brian York,1 Saul Karpen,1,2 Milton Finegold,3 David Moore,1 Lawrence Chan,1 Christopher B. Newgard,4 Bert W. O'Malley1{dagger}

Abstract: Hepatic glucose production is critical for basal brain function and survival when dietary glucose is unavailable. Glucose-6-phosphatase (G6Pase) is an essential, rate-limiting enzyme that serves as a terminal gatekeeper for hepatic glucose release into the plasma. Mutations in G6Pase result in Von Gierke's disease (glycogen storage disease–1a), a potentially fatal genetic disorder. We have identified the transcriptional coactivator SRC-2 as a regulator of fasting hepatic glucose release, a function that SRC-2 performs by controlling the expression of hepatic G6Pase. SRC-2 modulates G6Pase expression directly by acting as a coactivator with the orphan nuclear receptor ROR{alpha}. In addition, SRC-2 ablation, in both a whole-body and liver-specific manner, resulted in a Von Gierke's disease phenotype in mice. Our results position SRC-2 as a critical regulator of mammalian glucose production.

1 Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
2 Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
3 Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA.
4 Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC27710, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: berto{at}bcm.tmc.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A Murine Uterine Transcriptome, Responsive to Steroid Receptor Coactivator-2, Reveals Transcription Factor 23 as Essential for Decidualization of Human Endometrial Stromal Cells.
R. Kommagani, M. M. Szwarc, E. Kovanci, C. J. Creighton, B. W. O'Malley, F. J. DeMayo, and J. P. Lydon (2014)
Biol Reprod 90, 75
   Abstract »    Full Text »    PDF »
The Identification of Naturally Occurring Neoruscogenin as a Bioavailable, Potent, and High-Affinity Agonist of the Nuclear Receptor ROR{alpha} (NR1F1).
S. Helleboid, C. Haug, K. Lamottke, Y. Zhou, J. Wei, S. Daix, L. Cambula, G. Rigou, D. W. Hum, and R. Walczak (2014)
J Biomol Screen 19, 399-406
   Abstract »    Full Text »    PDF »
Inverse Agonist of Nuclear Receptor ERR{gamma} Mediates Antidiabetic Effect Through Inhibition of Hepatic Gluconeogenesis.
D.-K. Kim, G.-T. Gang, D. Ryu, M. Koh, Y.-N. Kim, S. S. Kim, J. Park, Y.-H. Kim, T. Sim, I.-K. Lee, et al. (2013)
Diabetes 62, 3093-3102
   Abstract »    Full Text »    PDF »
MicroRNA 33 Regulates Glucose Metabolism.
C. M. Ramirez, L. Goedeke, N. Rotllan, J.-H. Yoon, D. Cirera-Salinas, J. A. Mattison, Y. Suarez, R. de Cabo, M. Gorospe, and C. Fernandez-Hernando (2013)
Mol. Cell. Biol. 33, 2891-2902
   Abstract »    Full Text »    PDF »
Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids.
Y. Chinenov, R. Gupte, J. Dobrovolna, J. R. Flammer, B. Liu, F. E. Michelassi, and I. Rogatsky (2012)
PNAS 109, 11776-11781
   Abstract »    Full Text »    PDF »
Orphan Nuclear Receptor Estrogen-Related Receptor {gamma} (ERR{gamma}) Is Key Regulator of Hepatic Gluconeogenesis.
D.-K. Kim, D. Ryu, M. Koh, M.-W. Lee, D. Lim, M.-J. Kim, Y.-H. Kim, W.-J. Cho, C.-H. Lee, S. B. Park, et al. (2012)
J. Biol. Chem. 287, 21628-21639
   Abstract »    Full Text »    PDF »
A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer.
K. A. O'Donnell, V. W. Keng, B. York, E. L. Reineke, D. Seo, D. Fan, K. A. T. Silverstein, C. T. Schrum, W. R. Xie, L. Mularoni, et al. (2012)
PNAS 109, E1377-E1386
   Abstract »    Full Text »    PDF »
Estrogen-related Receptor {gamma} (ERR{gamma}) Is a Novel Transcriptional Regulator of Phosphatidic Acid Phosphatase, LIPIN1, and Inhibits Hepatic Insulin Signaling.
D.-K. Kim, J. R. Kim, M. Koh, Y. D. Kim, J.-M. Lee, D. Chanda, S. B. Park, J.-J. Min, C.-H. Lee, T.-S. Park, et al. (2011)
J. Biol. Chem. 286, 38035-38042
   Abstract »    Full Text »    PDF »
Crise de Foie, Redux?.
D. D. Moore (2011)
Science 331, 1275-1276
   Abstract »    Full Text »    PDF »
Steroid Receptor Coactivator (SRC) Family: Masters of Systems Biology.
B. York and B. W. O'Malley (2010)
J. Biol. Chem. 285, 38743-38750
   Abstract »    Full Text »    PDF »
Reprogramming the posttranslational code of SRC-3 confers a switch in mammalian systems biology.
B. York, C. Yu, J. V. Sagen, Z. Liu, B. C. Nikolai, R.-C. Wu, M. Finegold, J. Xu, and B. W. O'Malley (2010)
PNAS 107, 11122-11127
   Abstract »    Full Text »    PDF »
Regulation of FGF21 Expression and Secretion by Retinoic Acid Receptor-related Orphan Receptor {alpha}.
Y. Wang, L. A. Solt, and T. P. Burris (2010)
J. Biol. Chem. 285, 15668-15673
   Abstract »    Full Text »    PDF »
Modulation of Retinoic Acid Receptor-related Orphan Receptor {alpha} and {gamma} Activity by 7-Oxygenated Sterol Ligands.
Y. Wang, N. Kumar, L. A. Solt, T. I. Richardson, L. M. Helvering, C. Crumbley, R. D. Garcia-Ordonez, K. R. Stayrook, X. Zhang, S. Novick, et al. (2010)
J. Biol. Chem. 285, 5013-5025
   Abstract »    Full Text »    PDF »
The Benzenesulfoamide T0901317 [N-(2,2,2-Trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide] Is a Novel Retinoic Acid Receptor-Related Orphan Receptor-{alpha}/{gamma} Inverse Agonist.
N. Kumar, L. A. Solt, J. J. Conkright, Y. Wang, M. A. Istrate, S. A. Busby, R. D. Garcia-Ordonez, T. P. Burris, and P. R. Griffin (2010)
Mol. Pharmacol. 77, 228-236
   Abstract »    Full Text »    PDF »
Molecular control of circadian metabolic rhythms.
S. Li and J. D. Lin (2009)
J Appl Physiol 107, 1959-1964
   Abstract »    Full Text »    PDF »
Glucose-6-phosphatase Catalytic Subunit Gene Family.
J. C. Hutton and R. M. O'Brien (2009)
J. Biol. Chem. 284, 29241-29245
   Abstract »    Full Text »    PDF »
Foxa2-dependent hepatic gene regulatory networks depend on physiological state.
I. M. Bochkis, J. Schug, N. E. Rubins, A. R. Chopra, B. W. O'Malley, and K. H. Kaestner (2009)
Physiol Genomics 38, 186-195
   Abstract »    Full Text »    PDF »
Von Gierke's Disease Adopts an Orphan (and Its Partner).
A. Cheng and A. R. Saltiel (2009)
Science Signaling 2, pe8
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882