Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 322 (5907): 1490-1494

Copyright © 2008 by the American Association for the Advancement of Science

Generation and Regeneration of Cells of the Liver and Pancreas

Kenneth S. Zaret1*, and Markus Grompe2

Abstract: Liver and pancreas progenitors develop from endoderm cells in the embryonic foregut. Shortly after their specification, liver and pancreas progenitors rapidly acquire markedly different cellular functions and regenerative capacities. These changes are elicited by inductive signals and genetic regulatory factors that are highly conserved among vertebrates. Interest in the development and regeneration of the organs has been fueled by the intense need for hepatocytes and pancreatic β cells in the therapeutic treatment of liver failure and type I diabetes. Studies in diverse model organisms have revealed evolutionarily conserved inductive signals and transcription factor networks that elicit the differentiation of liver and pancreatic cells and provide guidance for how to promote hepatocyte and β cell differentiation from diverse stem and progenitor cell types.

1 Epigenetics and Progenitor Cells Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
2 Oregon Stem Cell Center and Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.

* To whom correspondence should be addressed. E-mail: zaret{at}

Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis.
M. Huch, P. Bonfanti, S. F. Boj, T. Sato, C. J. M. Loomans, M. van de Wetering, M. Sojoodi, V. S. W. Li, J. Schuijers, A. Gracanin, et al. (2013)
EMBO J. 32, 2708-2721
   Abstract »    Full Text »    PDF »
Neurogenin3 Activation Is Not Sufficient to Direct Duct-to-Beta Cell Transdifferentiation in the Adult Pancreas.
X. Xiao, P. Guo, C. Shiota, K. Prasadan, Y. El-Gohary, J. Wiersch, I. Gaffar, and G. K. Gittes (2013)
J. Biol. Chem. 288, 25297-25308
   Abstract »    Full Text »    PDF »
Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation.
T. Sugiyama, C. M. Benitez, A. Ghodasara, L. Liu, G. W. McLean, J. Lee, T. A. Blauwkamp, R. Nusse, C. V. E. Wright, G. Gu, et al. (2013)
PNAS 110, 12691-12696
   Abstract »    Full Text »    PDF »
{beta}-Cells Are Not Generated in Pancreatic Duct Ligation-Induced Injury in Adult Mice.
M. M. Rankin, C. J. Wilbur, K. Rak, E. J. Shields, A. Granger, and J. A. Kushner (2013)
Diabetes 62, 1634-1645
   Abstract »    Full Text »    PDF »
TGF{beta} Receptor Signaling Is Essential for Inflammation-Induced but Not {beta}-Cell Workload-Induced {beta}-Cell Proliferation.
X. Xiao, J. Wiersch, Y. El-Gohary, P. Guo, K. Prasadan, J. Paredes, C. Welsh, C. Shiota, and G. K. Gittes (2013)
Diabetes 62, 1217-1226
   Abstract »    Full Text »    PDF »
Characterization of an Apparently Novel {beta}-Cell Line-enriched 80-88 kDa Transcriptional Activator of the MafA and Pdx1 Genes.
C. S. Hunter and R. Stein (2013)
J. Biol. Chem. 288, 3795-3803
   Abstract »    Full Text »    PDF »
Sox17 haploinsufficiency results in perinatal biliary atresia and hepatitis in C57BL/6 background mice.
M. Uemura, A. Ozawa, T. Nagata, K. Kurasawa, N. Tsunekawa, I. Nobuhisa, T. Taga, K. Hara, A. Kudo, H. Kawakami, et al. (2013)
Development 140, 639-648
   Abstract »    Full Text »    PDF »
In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts.
A. Banga, E. Akinci, L. V. Greder, J. R. Dutton, and J. M. W. Slack (2012)
PNAS 109, 15336-15341
   Abstract »    Full Text »    PDF »
Transcriptional Networks in Liver and Intestinal Development.
K. L. Sheaffer and K. H. Kaestner (2012)
Cold Spring Harb Perspect Biol 4, a008284
   Abstract »    Full Text »    PDF »
Vascular instruction of pancreas development.
O. Cleaver and Y. Dor (2012)
Development 139, 2833-2843
   Abstract »    Full Text »    PDF »
Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer.
D. Li, E. J. Duell, K. Yu, H. A. Risch, S. H. Olson, C. Kooperberg, B. M. Wolpin, L. Jiao, X. Dong, B. Wheeler, et al. (2012)
Carcinogenesis 33, 1384-1390
   Abstract »    Full Text »    PDF »
Human ESC Self-renewal Promoting microRNAs Induce Epithelial-Mesenchymal Transition in Hepatocytes by Controlling the PTEN and TGF{beta} Tumor Suppressor Signaling Pathways.
C. J. Jung, S. Iyengar, K. R. Blahnik, J. X. Jiang, C. Tahimic, N. J. Torok, R. W. de vere White, P. J. Farnham, and M. Zern (2012)
Mol. Cancer Res. 10, 979-991
   Abstract »    Full Text »    PDF »
Deconstructing Pancreas Developmental Biology.
C. M. Benitez, W. R. Goodyer, and S. K. Kim (2012)
Cold Spring Harb Perspect Biol 4, a012401
   Abstract »    Full Text »    PDF »
Homeoprotein hhex-induced conversion of intestinal to ventral pancreatic precursors results in the formation of giant pancreata in Xenopus embryos.
H. Zhao, D. Han, I. B. Dawid, T. Pieler, and Y. Chen (2012)
PNAS 109, 8594-8599
   Abstract »    Full Text »    PDF »
The Activation of MEK/ERK Signaling Pathway by Bone Morphogenetic Protein 4 to Increase Hepatocellular Carcinoma Cell Proliferation and Migration.
C.-Y. Chiu, K.-K. Kuo, T.-L. Kuo, K.-T. Lee, and K.-H. Cheng (2012)
Mol. Cancer Res. 10, 415-427
   Abstract »    Full Text »    PDF »
Emerging roles of the FBW7 tumour suppressor in stem cell differentiation.
Z. Wang, H. Inuzuka, H. Fukushima, L. Wan, D. Gao, S. Shaik, F. H. Sarkar, and W. Wei (2012)
EMBO Rep. 13, 36-43
   Abstract »    Full Text »    PDF »
Blood vessels restrain pancreas branching, differentiation and growth.
J. Magenheim, O. Ilovich, A. Lazarus, A. Klochendler, O. Ziv, R. Werman, A. Hija, O. Cleaver, E. Mishani, E. Keshet, et al. (2011)
Development 138, 4743-4752
   Abstract »    Full Text »    PDF »
HNF4A is essential for specification of hepatic progenitors from human pluripotent stem cells.
A. DeLaForest, M. Nagaoka, K. Si-Tayeb, F. K. Noto, G. Konopka, M. A. Battle, and S. A. Duncan (2011)
Development 138, 4143-4153
   Abstract »    Full Text »    PDF »
Endoderm and mesoderm reciprocal signaling mediated by CXCL12 and CXCR4 regulates the migration of angioblasts and establishes the pancreatic fate.
K. Katsumoto and S. Kume (2011)
Development 138, 1947-1955
   Abstract »    Full Text »    PDF »
Core promoter recognition complex changes accompany liver development.
J. A. D'Alessio, R. Ng, H. Willenbring, and R. Tjian (2011)
PNAS 108, 3906-3911
   Abstract »    Full Text »    PDF »
Morphogenetics of early thyroid development.
H. Fagman and M. Nilsson (2011)
J. Mol. Endocrinol. 46, R33-R42
   Abstract »    Full Text »    PDF »
Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-, HNF4A-, and PDX1-bound loci in islets and liver.
B. G. Hoffman, G. Robertson, B. Zavaglia, M. Beach, R. Cullum, S. Lee, G. Soukhatcheva, L. Li, E. D. Wederell, N. Thiessen, et al. (2010)
Genome Res. 20, 1037-1051
   Abstract »    Full Text »    PDF »
The mitochondrial import gene tomm22 is specifically required for hepatocyte survival and provides a liver regeneration model.
S. Curado, E. A. Ober, S. Walsh, P. Cortes-Hernandez, H. Verkade, C. M. Koehler, and D. Y. R. Stainier (2010)
Dis. Model. Mech. 3, 486-495
   Abstract »    Full Text »    PDF »
First report of ectopic ACTH syndrome and PTHrP-induced hypercalcemia due to a hepatoblastoma in a child.
T. G P Grunewald, I. von Luettichau, U. Welsch, H.-G. Dorr, F. Hopner, K. Kovacs, S. Burdach, and W. Rabl (2010)
Eur. J. Endocrinol. 162, 813-818
   Abstract »    Full Text »    PDF »
Suppression of Alk8-mediated Bmp signaling cell-autonomously induces pancreatic {beta}-cells in zebrafish.
W.-S. Chung, O. Andersson, R. Row, D. Kimelman, and D. Y. R. Stainier (2010)
PNAS 107, 1142-1147
   Abstract »    Full Text »    PDF »
The therapeutic potential of stem cells.
F. M. Watt and R. R. Driskell (2010)
Phil Trans R Soc B 365, 155-163
   Abstract »    Full Text »    PDF »
The Fox Genes in the Liver: From Organogenesis to Functional Integration.
J. Le lay and K. H. Kaestner (2010)
Physiol Rev 90, 1-22
   Abstract »    Full Text »    PDF »
Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis.
S. S. Choi, A. Omenetti, R. P. Witek, C. A. Moylan, W.-K. Syn, Y. Jung, L. Yang, D. L. Sudan, J. K. Sicklick, G. A. Michelotti, et al. (2009)
Am J Physiol Gastrointest Liver Physiol 297, G1093-G1106
   Abstract »    Full Text »    PDF »
New Complexity in Differentiating Stem Cells Toward Hepatic and Pancreatic Fates.
S. S. Huppert and M. A. Magnuson (2009)
Science Signaling 2, pe50
   Abstract »    Full Text »    PDF »
New sources of {beta}-cells for treating diabetes.
S. Sahu, D. Tosh, and A. A Hardikar (2009)
J. Endocrinol. 202, 13-16
   Abstract »    Full Text »    PDF »
Dynamic Signaling Network for the Specification of Embryonic Pancreas and Liver Progenitors.
E. Wandzioch and K. S. Zaret (2009)
Science 324, 1707-1710
   Abstract »    Full Text »    PDF »
Origin of Stem Cells in Organogenesis.
J. M. W. Slack (2008)
Science 322, 1498-1501
   Abstract »    Full Text »    PDF »
Patterning Mechanisms of Branched Organs.
P. Lu and Z. Werb (2008)
Science 322, 1506-1509
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882