Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 322 (5907): 1494-1497

Copyright © 2008 by the American Association for the Advancement of Science

Cardiogenesis and the Complex Biology of Regenerative Cardiovascular Medicine

Kenneth R. Chien,1,2* Ibrahim J. Domian,1 Kevin Kit Parker3

Abstract: The heart is a complex organ system composed of a highly diverse set of muscle and nonmuscle cells. Understanding the pathways that drive the formation, migration, and assembly of these cells into the heart muscle tissue, the pacemaker and conduction system, and the coronary vasculature is a central problem in developmental biology. Efforts to unravel the biological complexity of in vivo cardiogenesis have identified a family of closely related multipotent cardiac progenitor cells. These progenitors must respond to non–cell-autonomous signaling cues to expand, differentiate, and ultimately integrate into the three-dimensional heart structures. Coupling tissue-engineering technologies with patient-specific cardiac progenitor biology holds great promise for the development of human cell models of human disease and may lay the foundation for novel approaches in regenerative cardiovascular medicine.

1 MGH Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
2 Department of Stem Cell and Regenerative Biology, Harvard University and the Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
3 Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

* To whom correspondence should be addressed. E-mail: kchien{at}partners.org


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Noninvasive and quantitative live imaging reveals a potential stress-responsive enhancer in the failing heart.
K. Matsuoka, Y. Asano, S. Higo, O. Tsukamoto, Y. Yan, S. Yamazaki, T. Matsuzaki, H. Kioka, H. Kato, Y. Uno, et al. (2014)
FASEB J 28, 1870-1879
   Abstract »    Full Text »    PDF »
Endoscopic Time-Lapse Imaging of Immune Cells in Infarcted Mouse Hearts.
K. Jung, P. Kim, F. Leuschner, R. Gorbatov, J. K. Kim, T. Ueno, M. Nahrendorf, and S. H. Yun (2013)
Circ. Res. 112, 891-899
   Abstract »    Full Text »    PDF »
MicroRNAs get to the heart of development.
G. Tao and J. F. Martin (2013)
eLife Sci 2, e01710
   Abstract »    Full Text »    PDF »
Instructive Nanofiber Scaffolds with VEGF Create a Microenvironment for Arteriogenesis and Cardiac Repair.
Y.-D. Lin, C.-Y. Luo, Y.-N. Hu, M.-L. Yeh, Y.-C. Hsueh, M.-Y. Chang, D.-C. Tsai, J.-N. Wang, M.-J. Tang, E. I. H. Wei, et al. (2012)
Science Translational Medicine 4, 146ra109
   Abstract »    Full Text »    PDF »
Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells to Cardiomyocytes: A Methods Overview.
C. L. Mummery, J. Zhang, E. S. Ng, D. A. Elliott, A. G. Elefanty, and T. J. Kamp (2012)
Circ. Res. 111, 344-358
   Abstract »    Full Text »    PDF »
FRS2{alpha}-Mediated FGF Signals Suppress Premature Differentiation of Cardiac Stem Cells Through Regulating Autophagy Activity.
J. Zhang, J. Liu, Y. Huang, J. Y. F. Chang, L. Liu, W. L. McKeehan, J. F. Martin, and F. Wang (2012)
Circ. Res. 110, e29-e39
   Abstract »    Full Text »    PDF »
Biomaterials to Enhance Stem Cell Function in the Heart.
V. F. M. Segers and R. T. Lee (2011)
Circ. Res. 109, 910-922
   Abstract »    Full Text »    PDF »
Mesp1: A Key Regulator of Cardiovascular Lineage Commitment.
A. Bondue and C. Blanpain (2010)
Circ. Res. 107, 1414-1427
   Abstract »    Full Text »    PDF »
The FGF-BMP Signaling Axis Regulates Outflow Tract Valve Primordium Formation by Promoting Cushion Neural Crest Cell Differentiation.
J. Zhang, J. Y. F. Chang, Y. Huang, X. Lin, Y. Luo, R. J. Schwartz, J. F. Martin, and F. Wang (2010)
Circ. Res. 107, 1209-1219
   Abstract »    Full Text »    PDF »
Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells.
J. Xi, M. Khalil, N. Shishechian, T. Hannes, K. Pfannkuche, H. Liang, A. Fatima, M. Haustein, F. Suhr, W. Bloch, et al. (2010)
FASEB J 24, 2739-2751
   Abstract »    Full Text »    PDF »
Monocytes: Protagonists of Infarct Inflammation and Repair After Myocardial Infarction.
M. Nahrendorf, M. J. Pittet, and F. K. Swirski (2010)
Circulation 121, 2437-2445
   Full Text »    PDF »
Perivascular Ancestors of Adult Multipotent Stem Cells.
M. Corselli, C. W. Chen, M. Crisan, L. Lazzari, and B. Peault (2010)
Arterioscler Thromb Vasc Biol 30, 1104-1109
   Abstract »    Full Text »    PDF »
Cardiac-targeted delivery of regulatory RNA molecules and genes for the treatment of heart failure.
W. Poller, R. Hajjar, H. P. Schultheiss, and H. Fechner (2010)
Cardiovasc Res 86, 353-364
   Abstract »    Full Text »    PDF »
3-Dimensional Structures to Enhance Cell Therapy and Engineer Contractile Tissue.
O. Schussler, J. C. Chachques, T. G. Mesana, E. J. Suuronen, Y. Lecarpentier, and M. Ruel (2010)
Asian Cardiovascular and Thoracic Annals 18, 188-198
   Abstract »    Full Text »    PDF »
Heart failure and mouse models.
R. Breckenridge (2010)
Dis. Model. Mech. 3, 138-143
   Abstract »    Full Text »    PDF »
Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity.
H. C. Quevedo, K. E. Hatzistergos, B. N. Oskouei, G. S. Feigenbaum, J. E. Rodriguez, D. Valdes, P. M. Pattany, J. P. Zambrano, Q. Hu, I. McNiece, et al. (2009)
PNAS 106, 14022-14027
   Abstract »    Full Text »    PDF »
Repair of Acute Myocardial Infarction by Human Stemness Factors Induced Pluripotent Stem Cells.
T. J. Nelson, A. Martinez-Fernandez, S. Yamada, C. Perez-Terzic, Y. Ikeda, and A. Terzic (2009)
Circulation 120, 408-416
   Abstract »    Full Text »    PDF »
Cardiac repair and regeneration: the Rubik's cube of cell therapy for heart disease.
K. D. Boudoulas and A. K. Hatzopoulos (2009)
Dis. Model. Mech. 2, 344-358
   Abstract »    Full Text »    PDF »
Myocardial oxygenation is critical for improving regeneration capacity.
S. Kaushal, C. P. Bouchard, and L. E. Wold (2009)
Am J Physiol Heart Circ Physiol 296, H1215-H1216
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882