Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 322 (5907): 1535-1539

Copyright © 2008 by the American Association for the Advancement of Science

Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral Initiation in Arabidopsis

Hongtao Liu, Xuhong Yu, Kunwu Li, John Klejnot, Hongyun Yang, Dominique Lisiero, Chentao Lin*

Abstract: Cryptochromes (CRY) are photolyase-like blue-light receptors that mediate light responses in plants and animals. How plant cryptochromes act in response to blue light is not well understood. We report here the identification and characterization of the Arabidopsis CIB1 (cryptochrome-interacting basic-helix-loop-helix) protein. CIB1 interacts with CRY2 (cryptochrome 2) in a blue light–specific manner in yeast and Arabidopsis cells, and it acts together with additional CIB1-related proteins to promote CRY2-dependent floral initiation. CIB1 binds to G box (CACGTG) in vitro with a higher affinity than its interaction with other E-box elements (CANNTG). However, CIB1 stimulates FT messenger RNA expression, and it interacts with chromatin DNA of the FT gene that possesses various E-box elements except G box. We propose that the blue light–dependent interaction of cryptochrome(s) with CIB1 and CIB1-related proteins represents an early photoreceptor signaling mechanism in plants.

Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA.

* To whom correspondence should be sent. E-mail: clin{at}mcdb.ucla.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Antagonistic Regulation of Growth and Immunity by the Arabidopsis Basic Helix-Loop-Helix Transcription Factor HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRESSION2 INTERACTING WITH INCREASED LEAF INCLINATION1 BINDING bHLH1.
F. G. Malinovsky, M. Batoux, B. Schwessinger, J. H. Youn, L. Stransfeld, J. Win, S.-K. Kim, and C. Zipfel (2014)
Plant Physiology 164, 1443-1455
   Abstract »    Full Text »    PDF »
Cell Surface ABP1-TMK Auxin-Sensing Complex Activates ROP GTPase Signaling.
T. Xu, N. Dai, J. Chen, S. Nagawa, M. Cao, H. Li, Z. Zhou, X. Chen, R. De Rycke, H. Rakusova, et al. (2014)
Science 343, 1025-1028
   Abstract »    Full Text »    PDF »
Blue Light-Dependent Interaction between Cryptochrome2 and CIB1 Regulates Transcription and Leaf Senescence in Soybean.
Y. Meng, H. Li, Q. Wang, B. Liu, and C. Lin (2013)
PLANT CELL 25, 4405-4420
   Abstract »    Full Text »    PDF »
Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms.
H. Liu, Q. Wang, Y. Liu, X. Zhao, T. Imaizumi, D. E. Somers, E. M. Tobin, and C. Lin (2013)
PNAS 110, 17582-17587
   Abstract »    Full Text »    PDF »
The Arabidopsis Eukaryotic Translation Initiation Factor eIF5A-2 Regulates Root Protoxylem Development by Modulating Cytokinin Signaling.
B. Ren, Q. Chen, S. Hong, W. Zhao, J. Feng, H. Feng, and J. Zuo (2013)
PLANT CELL 25, 3841-3857
   Abstract »    Full Text »    PDF »
Dynamic determination of the functional state in photolyase and the implication for cryptochrome.
Z. Liu, M. Zhang, X. Guo, C. Tan, J. Li, L. Wang, A. Sancar, and D. Zhong (2013)
PNAS 110, 12972-12977
   Abstract »    Full Text »    PDF »
Arabidopsis Casein Kinase1 Proteins CK1.3 and CK1.4 Phosphorylate Cryptochrome2 to Regulate Blue Light Signaling.
S.-T. Tan, C. Dai, H.-T. Liu, and H.-W. Xue (2013)
PLANT CELL 25, 2618-2632
   Abstract »    Full Text »    PDF »
GIGANTEA Enables Drought Escape Response via Abscisic Acid-Dependent Activation of the Florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1.
M. Riboni, M. Galbiati, C. Tonelli, and L. Conti (2013)
Plant Physiology 162, 1706-1719
   Abstract »    Full Text »    PDF »
A light-triggered protein secretion system.
D. Chen, E. S. Gibson, and M. J. Kennedy (2013)
J. Cell Biol. 201, 631-640
   Abstract »    Full Text »    PDF »
The grape berry-specific basic helix-loop-helix transcription factor VvCEB1 affects cell size.
P. Nicolas, D. Lecourieux, E. Gomes, S. Delrot, and F. Lecourieux (2013)
J. Exp. Bot. 64, 991-1003
   Abstract »    Full Text »    PDF »
A Triple Helix-Loop-Helix/Basic Helix-Loop-Helix Cascade Controls Cell Elongation Downstream of Multiple Hormonal and Environmental Signaling Pathways in Arabidopsis.
M.-Y. Bai, M. Fan, E. Oh, and Z.-Y. Wang (2012)
PLANT CELL 24, 4917-4929
   Abstract »    Full Text »    PDF »
Arabidopsis FHY3 and HY5 Positively Mediate Induction of COP1 Transcription in Response to Photomorphogenic UV-B Light.
X. Huang, X. Ouyang, P. Yang, O. S. Lau, G. Li, J. Li, H. Chen, and X. W. Deng (2012)
PLANT CELL 24, 4590-4606
   Abstract »    Full Text »    PDF »
A Triantagonistic Basic Helix-Loop-Helix System Regulates Cell Elongation in Arabidopsis.
M. Ikeda, S. Fujiwara, N. Mitsuda, and M. Ohme-Takagi (2012)
PLANT CELL 24, 4483-4497
   Abstract »    Full Text »    PDF »
The {gamma}-Carbonic Anhydrase Subcomplex of Mitochondrial Complex I Is Essential for Development and Important for Photomorphogenesis of Arabidopsis.
Q. Wang, R. Fristedt, X. Yu, Z. Chen, H. Liu, Y. Lee, H. Guo, S. S. Merchant, and C. Lin (2012)
Plant Physiology 160, 1373-1383
   Abstract »    Full Text »    PDF »
Arabidopsis bZIP16 Transcription Factor Integrates Light and Hormone Signaling Pathways to Regulate Early Seedling Development.
W.-P. Hsieh, H.-L. Hsieh, and S.-H. Wu (2012)
PLANT CELL 24, 3997-4011
   Abstract »    Full Text »    PDF »
The CRYPTOCHROME1-Dependent Response to Excess Light Is Mediated through the Transcriptional Activators ZINC FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM LIKE1 and ZML2 in Arabidopsis.
J. Shaikhali, J. de Dios Barajas-Lopez, K. Otvos, D. Kremnev, A. S. Garcia, V. Srivastava, G. Wingsle, L. Bako, and A. Strand (2012)
PLANT CELL 24, 3009-3025
   Abstract »    Full Text »    PDF »
Light-dependent, Dark-promoted Interaction between Arabidopsis Cryptochrome 1 and Phytochrome B Proteins.
R. M. Hughes, J. D. Vrana, J. Song, and C. L. Tucker (2012)
J. Biol. Chem. 287, 22165-22172
   Abstract »    Full Text »    PDF »
Diversity in Genetic In Vivo Methods for Protein-Protein Interaction Studies: from the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System.
B. Stynen, H. Tournu, J. Tavernier, and P. Van Dijck (2012)
Microbiol. Mol. Biol. Rev. 76, 331-382
   Abstract »    Full Text »    PDF »
Degradation of Arabidopsis CRY2 Is Regulated by SPA Proteins and Phytochrome A.
G. Weidler, S. zur Oven-Krockhaus, M. Heunemann, C. Orth, F. Schleifenbaum, K. Harter, U. Hoecker, and A. Batschauer (2012)
PLANT CELL 24, 2610-2623
   Abstract »    Full Text »    PDF »
Shedding Light on Large-Scale Chromatin Reorganization in Arabidopsis thaliana.
M. van Zanten, F. Tessadori, A. J. M. Peeters, and P. Fransz (2012)
Mol Plant 5, 583-590
   Abstract »    Full Text »    PDF »
Interactions between HLH and bHLH Factors Modulate Light-Regulated Plant Development.
Y. Hao, E. Oh, G. Choi, Z. Liang, and Z.-Y. Wang (2012)
Mol Plant 5, 688-697
   Abstract »    Full Text »    PDF »
The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering.
A. Lazaro, F. Valverde, M. Pineiro, and J. A. Jarillo (2012)
PLANT CELL 24, 982-999
   Abstract »    Full Text »    PDF »
Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction.
X. Li, Q. Wang, X. Yu, H. Liu, H. Yang, C. Zhao, X. Liu, C. Tan, J. Klejnot, D. Zhong, et al. (2011)
PNAS 108, 20844-20849
   Abstract »    Full Text »    PDF »
A Role for Protein Kinase Casein Kinase2 {alpha}-Subunits in the Arabidopsis Circadian Clock.
S. X. Lu, H. Liu, S. M. Knowles, J. Li, L. Ma, E. M. Tobin, and C. Lin (2011)
Plant Physiology 157, 1537-1545
   Abstract »    Full Text »    PDF »
Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression.
C. Fankhauser and R. Ulm (2011)
Genes & Dev. 25, 1004-1009
   Abstract »    Full Text »    PDF »
Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light.
B. Liu, Z. Zuo, H. Liu, X. Liu, and C. Lin (2011)
Genes & Dev. 25, 1029-1034
   Abstract »    Full Text »    PDF »
Perception of UV-B by the Arabidopsis UVR8 Protein.
L. Rizzini, J.-J. Favory, C. Cloix, D. Faggionato, A. O'Hara, E. Kaiserli, R. Baumeister, E. Schafer, F. Nagy, G. I. Jenkins, et al. (2011)
Science 332, 103-106
   Abstract »    Full Text »    PDF »
Photosynthesis-Dependent and -Independent Responses of Stomata to Blue, Red and Green Monochromatic Light: Differences Between the Normally Oriented and Inverted Leaves of Sunflower.
Y. Wang, K. Noguchi, and I. Terashima (2011)
Plant Cell Physiol. 52, 479-489
   Abstract »    Full Text »    PDF »
HYPOSENSITIVE TO LIGHT, an Alpha/Beta Fold Protein, Acts Downstream of ELONGATED HYPOCOTYL 5 to Regulate Seedling De-Etiolation.
X.-D. Sun and M. Ni (2011)
Mol Plant 4, 116-126
   Abstract »    Full Text »    PDF »
Photoreceptors CRYTOCHROME2 and Phytochrome B Control Chromatin Compaction in Arabidopsis.
M. van Zanten, F. Tessadori, F. McLoughlin, R. Smith, F. F. Millenaar, R. van Driel, L. A. C. J. Voesenek, A. J. M. Peeters, and P. Fransz (2010)
Plant Physiology 154, 1686-1696
   Abstract »    Full Text »    PDF »
A Gain-of-Function Mutation of Arabidopsis CRYPTOCHROME1 Promotes Flowering.
V. Exner, C. Alexandre, G. Rosenfeldt, P. Alfarano, M. Nater, A. Caflisch, W. Gruissem, A. Batschauer, and L. Hennig (2010)
Plant Physiology 154, 1633-1645
   Abstract »    Full Text »    PDF »
Arabidopsis Transcription Factor ELONGATED HYPOCOTYL5 Plays a Role in the Feedback Regulation of Phytochrome A Signaling.
J. Li, G. Li, S. Gao, C. Martinez, G. He, Z. Zhou, X. Huang, J.-H. Lee, H. Zhang, Y. Shen, et al. (2010)
PLANT CELL 22, 3634-3649
   Abstract »    Full Text »    PDF »
Deciphering the Arabidopsis Floral Transition Process by Integrating a Protein-Protein Interaction Network and Gene Expression Data.
F. He, Y. Zhou, and Z. Zhang (2010)
Plant Physiology 153, 1492-1505
   Abstract »    Full Text »    PDF »
Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase.
R.-D. Jeong, A. C. Chandra-Shekara, S. R. Barman, D. Navarre, D. F. Klessig, A. Kachroo, and P. Kachroo (2010)
PNAS 107, 13538-13543
   Abstract »    Full Text »    PDF »
cis-Regulatory Elements and Chromatin State Coordinately Control Temporal and Spatial Expression of FLOWERING LOCUS T in Arabidopsis.
J. Adrian, S. Farrona, J. J. Reimer, M. C. Albani, G. Coupland, and F. Turck (2010)
PLANT CELL 22, 1425-1440
   Abstract »    Full Text »    PDF »
Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants.
N. Pires and L. Dolan (2010)
Mol. Biol. Evol. 27, 862-874
   Abstract »    Full Text »    PDF »
SHORT HYPOCOTYL UNDER BLUE1 Truncations and Mutations Alter Its Association with a Signaling Protein Complex in Arabidopsis.
Y. Zhou and M. Ni (2010)
PLANT CELL 22, 703-715
   Abstract »    Full Text »    PDF »
REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways.
R. Rawat, J. Schwartz, M. A. Jones, I. Sairanen, Y. Cheng, C. R. Andersson, Y. Zhao, K. Ljung, and S. L. Harmer (2009)
PNAS 106, 16883-16888
   Abstract »    Full Text »    PDF »
Flowering Newsletter bibliography for 2008.
Compiled by, F. Tooke, T. Chiurugwi, and N. Battey (2009)
J. Exp. Bot.
   Full Text »    PDF »
Blue Light Induces Degradation of the Negative Regulator Phytochrome Interacting Factor 1 to Promote Photomorphogenic Development of Arabidopsis Seedlings.
A. Castillon, H. Shen, and E. Huq (2009)
Genetics 182, 161-171
   Abstract »    Full Text »    PDF »
Formation of Nuclear Bodies of Arabidopsis CRY2 in Response to Blue Light Is Associated with Its Blue Light-Dependent Degradation.
X. Yu, R. Sayegh, M. Maymon, K. Warpeha, J. Klejnot, H. Yang, J. Huang, J. Lee, L. Kaufman, and C. Lin (2009)
PLANT CELL 21, 118-130
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882