Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 322 (5907): 1555-1559

Copyright © 2008 by the American Association for the Advancement of Science

Activation of Pannexin-1 Hemichannels Augments Aberrant Bursting in the Hippocampus

Roger J. Thompson,1*{dagger} Michael F. Jackson,2 Michelle E. Olah,2 Ravi L. Rungta,1 Dustin J. Hines,1 Michael A. Beazely,2 John F. MacDonald,2 Brian A. MacVicar1{dagger}

Abstract: Pannexin-1 (Px1) is expressed at postsynaptic sites in pyramidal neurons, suggesting that these hemichannels contribute to dendritic signals associated with synaptic function. We found that, in pyramidal neurons, N-methyl-D-aspartate receptor (NMDAR) activation induced a secondary prolonged current and dye flux that were blocked with a specific inhibitory peptide against Px1 hemichannels; knockdown of Px1 by RNA interference blocked the current in cultured neurons. Enhancing endogenous NMDAR activation in brain slices by removing external magnesium ions (Mg2+) triggered epileptiform activity, which had decreased spike amplitude and prolonged interburst interval during application of the Px1 hemichannel blocking peptide. We conclude that Px1 hemichannel opening is triggered by NMDAR stimulation and can contribute to epileptiform seizure activity.

1 Department of Psychiatry and Brain Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada.
2 Robarts Research Institute, University of Western Ontario, London, ON N6A 5K8, Canada.

* Present address: Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive Northwest, Calgary, AB T2N 4N1, Canada.

{dagger} To whom correspondence should be addressed. E-mail: rj.thompson{at}ucalgary.ca (R.J.T.); bmacvicar{at}brain.ubc.ca (B.A.M.)

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The food dye FD&C Blue No. 1 is a selective inhibitor of the ATP release channel Panx1.
J. Wang, D. G. Jackson, and G. Dahl (2013)
J. Gen. Physiol. 141, 649-656
   Abstract »    Full Text »    PDF »
Physiological mechanisms for the modulation of pannexin 1 channel activity.
J. K. Sandilos and D. A. Bayliss (2012)
J. Physiol. 590, 6257-6266
   Abstract »    Full Text »    PDF »
Pannexin1 contributes to pathophysiological ATP release in lipoapoptosis induced by saturated free fatty acids in liver cells.
F. Xiao, S. L. Waldrop, A.-k. Khimji, and G. Kilic (2012)
Am J Physiol Cell Physiol 303, C1034-C1044
   Abstract »    Full Text »    PDF »
Anoxia-Induced NMDA Receptor Activation Opens Pannexin Channels via Src Family Kinases.
N. L. Weilinger, P. L. Tang, and R. J. Thompson (2012)
J. Neurosci. 32, 12579-12588
   Abstract »    Full Text »    PDF »
Mechanisms of ATP release and signalling in the blood vessel wall.
A. W. Lohman, M. Billaud, and B. E. Isakson (2012)
Cardiovasc Res 95, 269-280
   Abstract »    Full Text »    PDF »
Neuroinflammation alters voltage-dependent conductance in striatal astrocytes.
N. Karpuk, M. Burkovetskaya, and T. Kielian (2012)
J Neurophysiol 108, 112-123
   Abstract »    Full Text »    PDF »
Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice.
T. Engel, R. Gomez-Villafuertes, K. Tanaka, G. Mesuret, A. Sanz-Rodriguez, P. Garcia-Huerta, M. T. Miras-Portugal, D. C. Henshall, and M. Diaz-Hernandez (2012)
FASEB J 26, 1616-1628
   Abstract »    Full Text »    PDF »
In Vivo Labeling of Cortical Astrocytes with Sulforhodamine 101 (SR101).
A. Nimmerjahn and F. Helmchen (2012)
Cold Spring Harb Protoc 2012, pdb.prot068155
   Abstract »    Full Text »    PDF »
Neuronal Gap Junction Coupling Is Regulated by Glutamate and Plays Critical Role in Cell Death during Neuronal Injury.
Y. Wang, J.-H. Song, J. V. Denisova, W.-M. Park, J. D. Fontes, and A. B. Belousov (2012)
J. Neurosci. 32, 713-725
   Abstract »    Full Text »    PDF »
Pannexins in ischemia-induced neurodegeneration.
P. Bargiotas, A. Krenz, S. G. Hormuzdi, D. A. Ridder, A. Herb, W. Barakat, S. Penuela, J. von Engelhardt, H. Monyer, and M. Schwaninger (2011)
PNAS 108, 20772-20777
   Abstract »    Full Text »    PDF »
Pathways Regulating the Trafficking and Turnover of Pannexin1 Protein and the Role of the C-terminal Domain.
R. Gehi, Q. Shao, and D. W. Laird (2011)
J. Biol. Chem. 286, 27639-27653
   Abstract »    Full Text »    PDF »
Network recruitment to coherent oscillations in a hippocampal computer model.
W. C. Stacey, A. Krieger, and B. Litt (2011)
J Neurophysiol 105, 1464-1481
   Abstract »    Full Text »    PDF »
Potent inhibition of anoxic depolarization by the sodium channel blocker dibucaine.
H. A. Douglas, J. K. Callaway, J. Sword, S. A. Kirov, and R. D. Andrew (2011)
J Neurophysiol 105, 1482-1494
   Abstract »    Full Text »    PDF »
Amyloid {beta}-Induced Death in Neurons Involves Glial and Neuronal Hemichannels.
J. A. Orellana, K. F. Shoji, V. Abudara, P. Ezan, E. Amigou, P. J. Saez, J. X. Jiang, C. C. Naus, J. C. Saez, and C. Giaume (2011)
J. Neurosci. 31, 4962-4977
   Abstract »    Full Text »    PDF »
Pannexin 1 Constitutes the Large Conductance Cation Channel of Cardiac Myocytes.
M.-C. Kienitz, K. Bender, R. Dermietzel, L. Pott, and G. Zoidl (2011)
J. Biol. Chem. 286, 290-298
   Abstract »    Full Text »    PDF »
The role of pannexin hemichannels in the anoxic depolarization of hippocampal pyramidal cells.
C. Madry, C. Haglerod, and D. Attwell (2010)
Brain 133, 3755-3763
   Abstract »    Full Text »    PDF »
Pannexin 2 Is Expressed by Postnatal Hippocampal Neural Progenitors and Modulates Neuronal Commitment.
L. A. Swayne, C. D. Sorbara, and S. A. L. Bennett (2010)
J. Biol. Chem. 285, 24977-24986
   Abstract »    Full Text »    PDF »
Purinergic Signaling: A Fundamental Mechanism in Neutrophil Activation.
Y. Chen, Y. Yao, Y. Sumi, A. Li, U. K. To, A. Elkhal, Y. Inoue, T. Woehrle, Q. Zhang, C. Hauser, et al. (2010)
Science Signaling 3, ra45
   Abstract »    Full Text »    PDF »
Pannexin1 and Pannexin3 Delivery, Cell Surface Dynamics, and Cytoskeletal Interactions.
R. Bhalla-Gehi, S. Penuela, J. M. Churko, Q. Shao, and D. W. Laird (2010)
J. Biol. Chem. 285, 9147-9160
   Abstract »    Full Text »    PDF »
Metabolic Autocrine Regulation of Neurons Involves Cooperation among Pannexin Hemichannels, Adenosine Receptors, and KATP Channels.
M. Kawamura Jr, D. N. Ruskin, and S. A. Masino (2010)
J. Neurosci. 30, 3886-3895
   Abstract »    Full Text »    PDF »
Glycosylation Regulates Pannexin Intermixing and Cellular Localization.
S. Penuela, R. Bhalla, K. Nag, and D. W. Laird (2009)
Mol. Biol. Cell 20, 4313-4323
   Abstract »    Full Text »    PDF »
Synaptic Noise and Physiological Coupling Generate High-Frequency Oscillations in a Hippocampal Computational Model.
W. C. Stacey, M. T. Lazarewicz, and B. Litt (2009)
J Neurophysiol 102, 2342-2357
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans Innexins Regulate Active Zone Differentiation.
E. Yeh, T. Kawano, S. Ng, R. Fetter, W. Hung, Y. Wang, and M. Zhen (2009)
J. Neurosci. 29, 5207-5217
   Abstract »    Full Text »    PDF »
Both sides now: multiple interactions of ATP with pannexin-1 hemichannels. Focus on "A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP".
G. R. Dubyak (2009)
Am J Physiol Cell Physiol 296, C235-C241
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882