Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 322 (5909): 1832-1835

Copyright © 2008 by the American Association for the Advancement of Science

The Circadian Clock in Arabidopsis Roots Is a Simplified Slave Version of the Clock in Shoots

Allan B. James,1 José A. Monreal,1 Gillian A. Nimmo,1 Ciarán L. Kelly,1 Pawel Herzyk,2,3 Gareth I. Jenkins,1 Hugh G. Nimmo1*

Abstract: The circadian oscillator in eukaryotes consists of several interlocking feedback loops through which the expression of clock genes is controlled. It is generally assumed that all plant cells contain essentially identical and cell-autonomous multiloop clocks. Here, we show that the circadian clock in the roots of mature Arabidopsis plants differs markedly from that in the shoots and that the root clock is synchronized by a photosynthesis-related signal from the shoot. Two of the feedback loops of the plant circadian clock are disengaged in roots, because two key clock components, the transcription factors CCA1 and LHY, are able to inhibit gene expression in shoots but not in roots. Thus, the plant clock is organ-specific but not organ-autonomous.

1 Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
2 Division of Integrated Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
3 The Sir Henry Wellcome Functional Genomics Facility, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.

* To whom correspondence should be addressed. E-mail: h.g.nimmo{at}bio.gla.ac.uk


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Quantitative analysis of regulatory flexibility under changing environmental conditions.
K. D. Edwards, O. E. Akman, K. Knox, P. J. Lumsden, A. W. Thomson, P. E. Brown, A. Pokhilko, L. Kozma-Bognar, F. Nagy, D. A. Rand, et al. (2014)
Mol Syst Biol 6, 424
   Abstract »    Full Text »    PDF »
Connections between circadian clocks and carbon metabolism reveal species-specific effects on growth control.
L. M. Muller, M. von Korff, and S. J. Davis (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.
D. M. Chiasson, P. C. Loughlin, D. Mazurkiewicz, M. Mohammadidehcheshmeh, E. E. Fedorova, M. Okamoto, E. McLean, A. D. M. Glass, S. E. Smith, T. Bisseling, et al. (2014)
PNAS 111, 4814-4819
   Abstract »    Full Text »    PDF »
Inference on periodicity of circadian time series.
M. J. Costa, B. Finkenstadt, V. Roche, F. Levi, P. D. Gould, J. Foreman, K. Halliday, A. Hall, and D. A. Rand (2013)
Biostat. 14, 792-806
   Abstract »    Full Text »    PDF »
Sweet immunity in the plant circadian regulatory network.
M. R. Bolouri Moghaddam and W. Van den Ende (2013)
J. Exp. Bot. 64, 1439-1449
   Abstract »    Full Text »    PDF »
Iron Is Involved in the Maintenance of Circadian Period Length in Arabidopsis.
Y.-Y. Chen, Y. Wang, L.-J. Shin, J.-F. Wu, V. Shanmugam, M. Tsednee, J.-C. Lo, C.-C. Chen, S.-H. Wu, and K.-C. Yeh (2013)
Plant Physiology 161, 1409-1420
   Abstract »    Full Text »    PDF »
Reciprocal Interaction of the Circadian Clock with the Iron Homeostasis Network in Arabidopsis.
S. Hong, S. A. Kim, M. L. Guerinot, and C. R. McClung (2013)
Plant Physiology 161, 893-903
   Abstract »    Full Text »    PDF »
Lunisolar tidal force and the growth of plant roots, and some other of its effects on plant movements.
P. W. Barlow and J. Fisahn (2012)
Ann. Bot. 110, 301-318
   Abstract »    Full Text »    PDF »
Diel patterns of leaf and root growth: endogenous rhythmicity or environmental response?.
T. Ruts, S. Matsubara, A. Wiese-Klinkenberg, and A. Walter (2012)
J. Exp. Bot. 63, 3339-3351
   Abstract »    Full Text »    PDF »
Spontaneous spatiotemporal waves of gene expression from biological clocks in the leaf.
B. Wenden, D. L. K. Toner, S. K. Hodge, R. Grima, and A. J. Millar (2012)
PNAS 109, 6757-6762
   Abstract »    Full Text »    PDF »
Structure and Dynamics of the Isoprenoid Pathway Network.
E. Vranova, D. Coman, and W. Gruissem (2012)
Mol Plant 5, 318-333
   Abstract »    Full Text »    PDF »
Alternative Splicing Mediates Responses of the Arabidopsis Circadian Clock to Temperature Changes.
A. B. James, N. H. Syed, S. Bordage, J. Marshall, G. A. Nimmo, G. I. Jenkins, P. Herzyk, J. W. S. Brown, and H. G. Nimmo (2012)
PLANT CELL 24, 961-981
   Abstract »    Full Text »    PDF »
Interactions between plant circadian clocks and solute transport.
M. J. Haydon, L. J. Bell, and A. A. R. Webb (2011)
J. Exp. Bot. 62, 2333-2348
   Abstract »    Full Text »    PDF »
The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose.
N. Dalchau, S. J. Baek, H. M. Briggs, F. C. Robertson, A. N. Dodd, M. J. Gardner, M. A. Stancombe, M. J. Haydon, G.-B. Stan, J. M. Goncalves, et al. (2011)
PNAS 108, 5104-5109
   Abstract »    Full Text »    PDF »
Intercellular Communication during Plant Development.
J. M. Van Norman, N. W. Breakfield, and P. N. Benfey (2011)
PLANT CELL 23, 855-864
   Abstract »    Full Text »    PDF »
Plant Biology in the Fourth Dimension.
S. Harmer (2010)
Plant Physiology 154, 467-470
   Full Text »    PDF »
Rapid Assessment of Gene Function in the Circadian Clock Using Artificial MicroRNA in Arabidopsis Mesophyll Protoplasts.
J. Kim and D. E. Somers (2010)
Plant Physiology 154, 611-621
   Abstract »    Full Text »    PDF »
Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects.
R. Poire, A. Wiese-Klinkenberg, B. Parent, M. Mielewczik, U. Schurr, F. Tardieu, and A. Walter (2010)
J. Exp. Bot. 61, 1751-1759
   Abstract »    Full Text »    PDF »
Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock.
B. Thines and F. G. Harmon (2010)
PNAS 107, 3257-3262
   Abstract »    Full Text »    PDF »
A circadian clock in Saccharomyces cerevisiae.
Z. Eelderink-Chen, G. Mazzotta, M. Sturre, J. Bosman, T. Roenneberg, and M. Merrow (2010)
PNAS 107, 2043-2047
   Abstract »    Full Text »    PDF »
Global Gene Expression Responses to Waterlogging in Roots and Leaves of Cotton (Gossypium hirsutum L.).
J. A. Christianson, D. J. Llewellyn, E. S. Dennis, and I. W. Wilson (2010)
Plant Cell Physiol. 51, 21-37
   Abstract »    Full Text »    PDF »
Plant research accelerates along the (bio)informatics superhighway: Symposium on Plant Sensing, Response and Adaptation to the Environment.
J. M. Jimenez-Gomez and J. N. Maloof (2009)
EMBO Rep. 10, 568-572
   Full Text »    PDF »
Posttranslational Regulation of CIRCADIAN CLOCK ASSOCIATED1 in the Circadian Oscillator of Arabidopsis.
E. Yakir, D. Hilman, I. Kron, M. Hassidim, N. Melamed-Book, and R. M. Green (2009)
Plant Physiology 150, 844-857
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882