Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 323 (5914): 651-654

Copyright © 2009 by the American Association for the Advancement of Science

Calcineurin/NFAT Signaling Is Required for Neuregulin-Regulated Schwann Cell Differentiation

Shih-Chu Kao,1,2 Hai Wu,1,2 Jianming Xie,1 Ching-Pin Chang,1,2 Jeffrey A. Ranish,3 Isabella A. Graef,2* Gerald R. Crabtree1,2*

Abstract: Schwann cells develop from multipotent neural crest cells and form myelin sheaths around axons that allow rapid transmission of action potentials. Neuregulin signaling through the ErbB receptor regulates Schwann cell development; however, the downstream pathways are not fully defined. We find that mice lacking calcineurin B1 in the neural crest have defects in Schwann cell differentiation and myelination. Neuregulin addition to Schwann cell precursors initiates an increase in cytoplasmic Ca2+, which activates calcineurin and the downstream transcription factors NFATc3 and c4. Purification of NFAT protein complexes shows that Sox10 is an NFAT nuclear partner and synergizes with NFATc4 to activate Krox20, which regulates genes necessary for myelination. Our studies demonstrate that calcineurin and NFAT are essential for neuregulin and ErbB signaling, neural crest diversification, and differentiation of Schwann cells.

1 Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
2 Department of Pathology and Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
3 Institute for Systems Biology, Seattle, WA 98103, USA.

* To whom correspondence should be addressed. E-mail: crabtree{at}stanford.edu or igraef{at}stanford.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system.
B. A. Heller, M. Ghidinelli, J. Voelkl, S. Einheber, R. Smith, E. Grund, G. Morahan, D. Chandler, L. Kalaydjieva, F. Giancotti, et al. (2014)
J. Cell Biol. 204, 1219-1236
   Abstract »    Full Text »    PDF »
miR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury.
S. Zhou, R. Gao, W. Hu, T. Qian, N. Wang, G. Ding, F. Ding, B. Yu, and X. Gu (2014)
J. Cell Sci. 127, 967-976
   Abstract »    Full Text »    PDF »
Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination.
M. E. Sheean, E. McShane, C. Cheret, J. Walcher, T. Muller, A. Wulf-Goldenberg, S. Hoelper, A. N. Garratt, M. Kruger, K. Rajewsky, et al. (2014)
Genes & Dev. 28, 290-303
   Abstract »    Full Text »    PDF »
Neuregulin-1 Type I: A Hidden Power Within Schwann Cells for Triggering Peripheral Nerve Remyelination.
A. Krishnan (2013)
Science Signaling 6, jc1
   Abstract »    Full Text »    PDF »
NF-{kappa}B Forms a Complex with the Chromatin Remodeler BRG1 to Regulate Schwann Cell Differentiation.
A. S. Limpert, S. Bai, M. Narayan, J. Wu, S. O. Yoon, B. D. Carter, and Q. R. Lu (2013)
J. Neurosci. 33, 2388-2397
   Abstract »    Full Text »    PDF »
Loss of SOX10 function contributes to the phenotype of human Merlin-null schwannoma cells.
R. D. S. Doddrell, X.-P. Dun, A. Shivane, M. L. Feltri, L. Wrabetz, M. Wegner, E. Sock, C. O. Hanemann, and D. B. Parkinson (2013)
Brain 136, 549-563
   Abstract »    Full Text »    PDF »
Nuclear factor of activated T-cell c3 inhibition of mammalian target of rapamycin signaling through induction of regulated in development and DNA damage response 1 in human intestinal cells.
Y. Zhou, Q. Wang, Z. Guo, H. L. Weiss, and B. M. Evers (2012)
Mol. Biol. Cell 23, 2963-2972
   Abstract »    Full Text »    PDF »
c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling.
X. Fontana, M. Hristova, C. Da Costa, S. Patodia, L. Thei, M. Makwana, B. Spencer-Dene, M. Latouche, R. Mirsky, K. R. Jessen, et al. (2012)
J. Cell Biol. 198, 127-141
   Abstract »    Full Text »    PDF »
Nuclear factor of activated T cells (NFATc4) is required for BDNF-dependent survival of adult-born neurons and spatial memory formation in the hippocampus.
G. Quadrato, M. Benevento, S. Alber, C. Jacob, E. M. Floriddia, T. Nguyen, M. Y. Elnaggar, C. M. Pedroarena, J. D. Molkentin, and S. Di Giovanni (2012)
PNAS 109, E1499-E1508
   Abstract »    Full Text »    PDF »
p38 MAPK Activation Promotes Denervated Schwann Cell Phenotype and Functions as a Negative Regulator of Schwann Cell Differentiation and Myelination.
D. P. Yang, J. Kim, N. Syed, Y.-j. Tung, A. Bhaskaran, T. Mindos, R. Mirsky, K. R. Jessen, P. Maurel, D. B. Parkinson, et al. (2012)
J. Neurosci. 32, 7158-7168
   Abstract »    Full Text »    PDF »
Molecular Diagnostics of Calcineurin-Related Pathologies.
R. E. A. Musson, C. M. Cobbaert, and N. P. M. Smit (2012)
Clin. Chem. 58, 511-522
   Abstract »    Full Text »    PDF »
Inhibition of the NFAT Pathway Alleviates Amyloid Beta Neurotoxicity in a Mouse Model of Alzheimer's Disease.
E. Hudry, H.-Y. Wu, M. Arbel-Ornath, T. Hashimoto, R. Matsouaka, Z. Fan, T. L. Spires-Jones, R. A. Betensky, B. J. Bacskai, and B. T. Hyman (2012)
J. Neurosci. 32, 3176-3192
   Abstract »    Full Text »    PDF »
The Nucleosome Remodeling and Deacetylase Chromatin Remodeling (NuRD) Complex Is Required for Peripheral Nerve Myelination.
H. Hung, R. Kohnken, and J. Svaren (2012)
J. Neurosci. 32, 1517-1527
   Abstract »    Full Text »    PDF »
Unwrapping Myelination by MicroRNAs.
X. He, Y. Yu, R. Awatramani, and Q. R. Lu (2012)
Neuroscientist 18, 45-55
   Abstract »    Full Text »    PDF »
Nuclear factor of activated T cells (NFAT) signaling regulates PTEN expression and intestinal cell differentiation.
Q. Wang, Y. Zhou, L. N. Jackson, S. M. Johnson, C.-W. Chow, and B. M. Evers (2011)
Mol. Biol. Cell 22, 412-420
   Abstract »    Full Text »    PDF »
Regulation of Oligodendrocyte Differentiation and Myelination.
B. Emery (2010)
Science 330, 779-782
   Abstract »    Full Text »    PDF »
Calcium-Regulated Transcription in Plants.
Y. Galon, A. Finkler, and H. Fromm (2010)
Mol Plant 3, 653-669
   Abstract »    Full Text »    PDF »
MicroRNA-Deficient Schwann Cells Display Congenital Hypomyelination.
B. Yun, A. Anderegg, D. Menichella, L. Wrabetz, M. L. Feltri, and R. Awatramani (2010)
J. Neurosci. 30, 7722-7728
   Abstract »    Full Text »    PDF »
Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage.
M. Finzsch, S. Schreiner, T. Kichko, P. Reeh, E. R. Tamm, M. R. Bosl, D. Meijer, and M. Wegner (2010)
J. Cell Biol. 189, 701-712
   Abstract »    Full Text »    PDF »
Heart-specific Deletion of CnB1 Reveals Multiple Mechanisms Whereby Calcineurin Regulates Cardiac Growth and Function.
M. Maillet, J. Davis, M. Auger-Messier, A. York, H. Osinska, J. Piquereau, J. N. Lorenz, J. Robbins, R. Ventura-Clapier, and J. D. Molkentin (2010)
J. Biol. Chem. 285, 6716-6724
   Abstract »    Full Text »    PDF »
Cyclin D1 Is a Bona Fide Target Gene of NFATc1 and Is Sufficient in the Mediation of Injury-induced Vascular Wall Remodeling.
M. Karpurapu, D. Wang, D. Van Quyen, T.-K. Kim, V. Kundumani-Sridharan, S. Pulusani, and G. N. Rao (2010)
J. Biol. Chem. 285, 3510-3523
   Abstract »    Full Text »    PDF »
The tyrosine phosphatase Shp2 (PTPN11) directs Neuregulin-1/ErbB signaling throughout Schwann cell development.
K. S. Grossmann, H. Wende, F. E. Paul, C. Cheret, A. N. Garratt, S. Zurborg, K. Feinberg, D. Besser, H. Schulz, E. Peles, et al. (2009)
PNAS 106, 16704-16709
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882