Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 323 (5917): 1053-1057

Copyright © 2009 by the American Association for the Advancement of Science

Trifurcate Feed-Forward Regulation of Age-Dependent Cell Death Involving miR164 in Arabidopsis

Jin Hee Kim,1* Hye Ryun Woo,1* Jeongsik Kim,1 Pyung Ok Lim,2 In Chul Lee,1 Seung Hee Choi,1 Daehee Hwang,3,4 Hong Gil Nam1,4{dagger}

Abstract: Aging induces gradual yet massive cell death in higher organisms, including annual plants. Even so, the underlying regulatory mechanisms are barely known, despite the long-standing interest in this topic. Here, we demonstrate that ORE1, which is a NAC (NAM, ATAF, and CUC) transcription factor, positively regulates aging-induced cell death in Arabidopsis leaves. ORE1 expression is up-regulated concurrently with leaf aging by EIN2 but is negatively regulated by miR164. miR164 expression gradually decreases with aging through negative regulation by EIN2, which leads to the elaborate up-regulation of ORE1 expression. However, EIN2 still contributes to aging-induced cell death in the absence of ORE1. The trifurcate feed-forward pathway involving ORE1, miR164, and EIN2 provides a highly robust regulation to ensure that aging induces cell death in Arabidopsis leaves.

1 Division of Molecular Life Sciences, Pohang University of Science and Technology, Hyoja-dong, Pohang, Kyungbuk, 790-784, Republic of Korea.
2 Department of Science Education, Jeju National University, Jeju, 690-756, Republic of Korea.
3 Department of Chemical Engineering, Pohang University of Science and Technology, Hyoja-dong, Pohang, Kyungbuk, 790-784, Republic of Korea.
4 School of Interdisciplinary Biosciences and Bioengineering, Pohang University of Science and Technology, Hyoja-dong, Pohang, Kyungbuk, 790-784, Republic of Korea.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: nam{at}postech.ac.kr


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences.
S. Balazadeh, J. Schildhauer, W. L. Araujo, S. Munne-Bosch, A. R. Fernie, S. Proost, K. Humbeck, and B. Mueller-Roeber (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
QTL meta-analysis in Arabidopsis reveals an interaction between leaf senescence and resource allocation to seeds.
F. Chardon, S. Jasinski, M. Durandet, A. Lecureuil, F. Soulay, M. Bedu, P. Guerche, and C. Masclaux-Daubresse (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Arabidopsis ANGULATA10 is required for thylakoid biogenesis and mesophyll development.
R. Casanova-Saez, E. Mateo-Bonmati, S. Kangasjarvi, H. Candela, and J. L. Micol (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE2-mediated leaf senescence signalling in Arabidopsis.
H. J. Kim, S. H. Hong, Y. W. Kim, I. H. Lee, J. H. Jun, B.-K. Phee, T. Rupak, H. Jeong, Y. Lee, B. S. Hong, et al. (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
The stay-green trait.
H. Thomas and H. Ougham (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Modelling transcriptional networks in leaf senescence.
C. A. Penfold and V. Buchanan-Wollaston (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
The NAC Family Transcription Factor OsNAP Confers Abiotic Stress Response Through the ABA Pathway.
X. Chen, Y. Wang, B. Lv, J. Li, L. Luo, S. Lu, X. Zhang, H. Ma, and F. Ming (2014)
Plant Cell Physiol. 55, 604-619
   Abstract »    Full Text »    PDF »
Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves.
M. W. Christiansen and P. L. Gregersen (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing.
Y. Sakuraba, S.-H. Lee, Y.-S. Kim, O. K. Park, S. Hortensteiner, and N.-C. Paek (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
LSD 2.0: an update of the leaf senescence database.
Z. Li, Y. Zhao, X. Liu, J. Peng, H. Guo, and J. Luo (2014)
Nucleic Acids Res. 42, D1200-D1205
   Abstract »    Full Text »    PDF »
Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis.
J. Du, M. Li, D. Kong, L. Wang, Q. Lv, J. Wang, F. Bao, Q. Gong, J. Xia, and Y. He (2013)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
The tomato NAC transcription factor SlNAM2 is involved in flower-boundary morphogenesis.
A. Hendelman, R. Stav, H. Zemach, and T. Arazi (2013)
J. Exp. Bot. 64, 5497-5507
   Abstract »    Full Text »    PDF »
NAC Transcription Factor SPEEDY HYPONASTIC GROWTH Regulates Flooding-Induced Leaf Movement in Arabidopsis.
M. Rauf, M. Arif, J. Fisahn, G.-P. Xue, S. Balazadeh, and B. Mueller-Roeber (2013)
PLANT CELL 25, 4941-4955
   Abstract »    Full Text »    PDF »
An S-Domain Receptor-Like Kinase, OsSIK2, Confers Abiotic Stress Tolerance and Delays Dark-Induced Leaf Senescence in Rice.
L.-J. Chen, H. Wuriyanghan, Y.-Q. Zhang, K.-X. Duan, H.-W. Chen, Q.-T. Li, X. Lu, S.-J. He, B. Ma, W.-K. Zhang, et al. (2013)
Plant Physiology 163, 1752-1765
   Abstract »    Full Text »    PDF »
Identification of Rice Ethylene-Response Mutants and Characterization of MHZ7/OsEIN2 in Distinct Ethylene Response and Yield Trait Regulation.
B. Ma, S.-J. He, K.-X. Duan, C.-C. Yin, H. Chen, C. Yang, Q. Xiong, Q.-X. Song, X. Lu, H.-W. Chen, et al. (2013)
Mol Plant 6, 1830-1848
   Abstract »    Full Text »    PDF »
Plant leaf senescence and death - regulation by multiple layers of control and implications for aging in general.
H. R. Woo, H. J. Kim, H. G. Nam, and P. O. Lim (2013)
J. Cell Sci. 126, 4823-4833
   Abstract »    Full Text »    PDF »
The Arabidopsis NAC Transcription Factor ANAC096 Cooperates with bZIP-Type Transcription Factors in Dehydration and Osmotic Stress Responses.
Z.-Y. Xu, S. Y. Kim, D. Y. Hyeon, D. H. Kim, T. Dong, Y. Park, J. B. Jin, S.-H. Joo, S.-K. Kim, J. C. Hong, et al. (2013)
PLANT CELL 25, 4708-4724
   Abstract »    Full Text »    PDF »
Mutation of the Arabidopsis NAC016 Transcription Factor Delays Leaf Senescence.
Y.-S. Kim, Y. Sakuraba, S.-H. Han, S.-C. Yoo, and N.-C. Paek (2013)
Plant Cell Physiol. 54, 1660-1672
   Abstract »    Full Text »    PDF »
An NAC Transcription Factor Controls Ethylene-Regulated Cell Expansion in Flower Petals.
H. Pei, N. Ma, J. Tian, J. Luo, J. Chen, J. Li, Y. Zheng, X. Chen, Z. Fei, and J. Gao (2013)
Plant Physiology 163, 775-791
   Abstract »    Full Text »    PDF »
NAC Transcription Factor ORE1 and Senescence-Induced BIFUNCTIONAL NUCLEASE1 (BFN1) Constitute a Regulatory Cascade in Arabidopsis.
L. P. Matallana-Ramirez, M. Rauf, S. Farage-Barhom, H. Dortay, G.-P. Xue, W. Droge-Laser, A. Lers, S. Balazadeh, and B. Mueller-Roeber (2013)
Mol Plant 6, 1432-1452
   Abstract »    Full Text »    PDF »
ETHYLENE-INSENSITIVE3 Is a Senescence-Associated Gene That Accelerates Age-Dependent Leaf Senescence by Directly Repressing miR164 Transcription in Arabidopsis.
Z. Li, J. Peng, X. Wen, and H. Guo (2013)
PLANT CELL 25, 3311-3328
   Abstract »    Full Text »    PDF »
Comprehensive Dissection of Spatiotemporal Metabolic Shifts in Primary, Secondary, and Lipid Metabolism during Developmental Senescence in Arabidopsis.
M. Watanabe, S. Balazadeh, T. Tohge, A. Erban, P. Giavalisco, J. Kopka, B. Mueller-Roeber, A. R. Fernie, and R. Hoefgen (2013)
Plant Physiology 162, 1290-1310
   Abstract »    Full Text »    PDF »
A Regulatory Cascade Involving Class II ETHYLENE RESPONSE FACTOR Transcriptional Repressors Operates in the Progression of Leaf Senescence.
T. Koyama, H. Nii, N. Mitsuda, M. Ohta, S. Kitajima, M. Ohme-Takagi, and F. Sato (2013)
Plant Physiology 162, 991-1005
   Abstract »    Full Text »    PDF »
ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription.
M. Rauf, M. Arif, H. Dortay, L. P. Matallana-Ramirez, M. T. Waters, H. Gil Nam, P.-O. Lim, B. Mueller-Roeber, and S. Balazadeh (2013)
EMBO Rep. 14, 382-388
   Abstract »    Full Text »    PDF »
Carbon Deprivation-Driven Transcriptome Reprogramming in Detached Developmentally Arresting Arabidopsis Inflorescences.
A. Trivellini, R. Jibran, L. M. Watson, E. M. O'Donoghue, A. Ferrante, K. L. Sullivan, P. P. Dijkwel, and D. A. Hunter (2012)
Plant Physiology 160, 1357-1372
   Abstract »    Full Text »    PDF »
Expression of PaNAC01, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons.
E. Larsson, J. F. Sundstrom, F. Sitbon, and S. von Arnold (2012)
Ann. Bot. 110, 923-934
   Abstract »    Full Text »    PDF »
Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening.
W. Shan, J.-f. Kuang, L. Chen, H. Xie, H.-h. Peng, Y.-y. Xiao, X.-p. Li, W.-x. Chen, Q.-g. He, J.-y. Chen, et al. (2012)
J. Exp. Bot. 63, 5171-5187
   Abstract »    Full Text »    PDF »
Transcriptional and Metabolic Analysis of Senescence Induced by Preventing Pollination in Maize.
R. S. Sekhon, K. L. Childs, N. Santoro, C. E. Foster, C. R. Buell, N. de Leon, and S. M. Kaeppler (2012)
Plant Physiology 159, 1730-1744
   Abstract »    Full Text »    PDF »
Early Senescence and Cell Death in Arabidopsis saul1 Mutants Involves the PAD4-Dependent Salicylic Acid Pathway.
K. Vogelmann, G. Drechsel, J. Bergler, C. Subert, K. Philippar, J. Soll, J. C. Engelmann, T. Engelsdorf, L. M. Voll, and S. Hoth (2012)
Plant Physiology 159, 1477-1487
   Abstract »    Full Text »    PDF »
Grass MicroRNA Gene Paleohistory Unveils New Insights into Gene Dosage Balance in Subgenome Partitioning after Whole-Genome Duplication.
M. Abrouk, R. Zhang, F. Murat, A. Li, C. Pont, L. Mao, and J. Salse (2012)
PLANT CELL 24, 1776-1792
   Abstract »    Full Text »    PDF »
Overproduction of Chl b Retards Senescence Through Transcriptional Reprogramming in Arabidopsis.
Y. Sakuraba, S. Balazadeh, R. Tanaka, B. Mueller-Roeber, and A. Tanaka (2012)
Plant Cell Physiol. 53, 505-517
   Abstract »    Full Text »    PDF »
Gradual Increase of miR156 Regulates Temporal Expression Changes of Numerous Genes during Leaf Development in Rice.
K. Xie, J. Shen, X. Hou, J. Yao, X. Li, J. Xiao, and L. Xiong (2012)
Plant Physiology 158, 1382-1394
   Abstract »    Full Text »    PDF »
JUNGBRUNNEN1, a Reactive Oxygen Species-Responsive NAC Transcription Factor, Regulates Longevity in Arabidopsis.
A. Wu, A. D. Allu, P. Garapati, H. Siddiqui, H. Dortay, M.-I. Zanor, M. A. Asensi-Fabado, S. Munne-Bosch, C. Antonio, T. Tohge, et al. (2012)
PLANT CELL 24, 482-506
   Abstract »    Full Text »    PDF »
A Soybean Dual-Specificity Kinase, GmSARK, and Its Arabidopsis Homolog, AtSARK, Regulate Leaf Senescence through Synergistic Actions of Auxin and Ethylene.
F. Xu, T. Meng, P. Li, Y. Yu, Y. Cui, Y. Wang, Q. Gong, and N. N. Wang (2011)
Plant Physiology 157, 2131-2153
   Abstract »    Full Text »    PDF »
Toward microRNA-mediated gene regulatory networks in plants.
Y. Meng, C. Shao, and M. Chen (2011)
Brief Bioinform 12, 645-659
   Abstract »    Full Text »    PDF »
Senescence-associated Barley NAC (NAM, ATAF1,2, CUC) Transcription Factor Interacts with Radical-induced Cell Death 1 through a Disordered Regulatory Domain.
T. Kjaersgaard, M. K. Jensen, M. W. Christiansen, P. Gregersen, B. B. Kragelund, and K. Skriver (2011)
J. Biol. Chem. 286, 35418-35429
   Abstract »    Full Text »    PDF »
YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana.
J. I. Kim, A. S. Murphy, D. Baek, S.-W. Lee, D.-J. Yun, R. A. Bressan, and M. L. Narasimhan (2011)
J. Exp. Bot. 62, 3981-3992
   Abstract »    Full Text »    PDF »
The Arabidopsis NAC Transcription Factor VNI2 Integrates Abscisic Acid Signals into Leaf Senescence via the COR/RD Genes.
S.-D. Yang, P. J. Seo, H.-K. Yoon, and C.-M. Park (2011)
PLANT CELL 23, 2155-2168
   Abstract »    Full Text »    PDF »
Age-Dependent Action of an ABA-Inducible Receptor Kinase, RPK1, as a Positive Regulator of Senescence in Arabidopsis Leaves.
I. C. Lee, S. W. Hong, S. S. Whang, P. O. Lim, H. G. Nam, and J. C. Koo (2011)
Plant Cell Physiol. 52, 651-662
   Abstract »    Full Text »    PDF »
ORS1, an H2O2-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana.
S. Balazadeh, M. Kwasniewski, C. Caldana, M. Mehrnia, M. I. Zanor, G.-P. Xue, and B. Mueller-Roeber (2011)
Mol Plant 4, 346-360
   Abstract »    Full Text »    PDF »
High-Resolution Temporal Profiling of Transcripts during Arabidopsis Leaf Senescence Reveals a Distinct Chronology of Processes and Regulation.
E. Breeze, E. Harrison, S. McHattie, L. Hughes, R. Hickman, C. Hill, S. Kiddle, Y.-s. Kim, C. A. Penfold, D. Jenkins, et al. (2011)
PLANT CELL 23, 873-894
   Abstract »    Full Text »    PDF »
miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma.
S. D. Weeraratne, V. Amani, A. Neiss, N. Teider, D. K. Scott, S. L. Pomeroy, and Y.-J. Cho (2011)
Neuro Oncology 13, 165-175
   Abstract »    Full Text »    PDF »
The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis.
H. R. Woo, J. H. Kim, J. Kim, J. Kim, U. Lee, I.-J. Song, J.-H. Kim, H.-Y. Lee, H. G. Nam, and P. O. Lim (2010)
J. Exp. Bot. 61, 3947-3957
   Abstract »    Full Text »    PDF »
Combined Transcript and Metabolite Profiling of Arabidopsis Grown under Widely Variant Growth Conditions Facilitates the Identification of Novel Metabolite-Mediated Regulation of Gene Expression.
M. A. Hannah, C. Caldana, D. Steinhauser, I. Balbo, A. R. Fernie, and L. Willmitzer (2010)
Plant Physiology 152, 2120-2129
   Abstract »    Full Text »    PDF »
Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana.
E. A. Vidal, V. Araus, C. Lu, G. Parry, P. J. Green, G. M. Coruzzi, and R. A. Gutierrez (2010)
PNAS 107, 4477-4482
   Abstract »    Full Text »    PDF »
General Regulatory Patterns of Plant Mineral Nutrient Depletion as Revealed by serat Quadruple Mutants Disturbed in Cysteine Synthesis.
M. Watanabe, H.-M. Hubberten, K. Saito, and R. Hoefgen (2010)
Mol Plant 3, 438-466
   Abstract »    Full Text »    PDF »
Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity.
P. O. Lim, I. C. Lee, J. Kim, H. J. Kim, J. S. Ryu, H. R. Woo, and H. G. Nam (2010)
J. Exp. Bot. 61, 1419-1430
   Abstract »    Full Text »    PDF »
Co-ordination of developmental processes by small RNAs during leaf development.
A. Pulido and P. Laufs (2010)
J. Exp. Bot. 61, 1277-1291
   Abstract »    Full Text »    PDF »
The evolutionary-developmental analysis of plant microRNAs.
S. Jasinski, A. C. M. Vialette-Guiraud, and C. P. Scutt (2010)
Phil Trans R Soc B 365, 469-476
   Abstract »    Full Text »    PDF »
Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids.
M. Ha, J. Lu, L. Tian, V. Ramachandran, K. D. Kasschau, E. J. Chapman, J. C. Carrington, X. Chen, X.-J. Wang, and Z. J. Chen (2009)
PNAS 106, 17835-17840
   Abstract »    Full Text »    PDF »
Recent advances in ethylene research.
Z. Lin, S. Zhong, and D. Grierson (2009)
J. Exp. Bot. 60, 3311-3336
   Abstract »    Full Text »    PDF »
Functional Analysis of Transcription Factors in Arabidopsis.
N. Mitsuda and M. Ohme-Takagi (2009)
Plant Cell Physiol. 50, 1232-1248
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882