Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 323 (5919): 1313-1319

Copyright © 2009 by the American Association for the Advancement of Science

Functional Proteomics Identify Cornichon Proteins as Auxiliary Subunits of AMPA Receptors

Jochen Schwenk,1* Nadine Harmel,1* Gerd Zolles,1* Wolfgang Bildl,1 Akos Kulik,4 Bernd Heimrich,4 Osamu Chisaka,6 Peter Jonas,3 Uwe Schulte,1,2 Bernd Fakler,1,5{dagger} Nikolaj Klöcker1{dagger}

Abstract: Glutamate receptors of the AMPA-subtype (AMPARs), together with the transmembrane AMPAR regulatory proteins (TARPs), mediate fast excitatory synaptic transmission in the mammalian brain. Here, we show by proteomic analysis that the majority of AMPARs in the rat brain are coassembled with two members of the cornichon family of transmembrane proteins, rather than with the TARPs. Coassembly with cornichon homologs 2 and 3 affects AMPARs in two ways: Cornichons increase surface expression of AMPARs, and they alter channel gating by markedly slowing deactivation and desensitization kinetics. These results demonstrate that cornichons are intrinsic auxiliary subunits of native AMPARs and provide previously unknown molecular determinants for glutamatergic neurotransmission in the central nervous system.

1 Institute of Physiology II, University of Freiburg, Engesserstrasse 4, 79108 Freiburg, Germany.
2 Logopharm GmbH, Engesserstrasse 4, 79108 Freiburg, Germany.
3 Institute of Physiology I, University of Freiburg, Engesserstrasse 4, 79108 Freiburg, Germany.
4 Institute of Anatomy and Cell Biology, University of Freiburg, Albertstrasse 23, 79104 Freiburg, Germany.
5 Center for Biological Signaling Studies (bioss), Albertstrasse 10, 79104 Freiburg, Germany.
6 Department of Cell and Developmental Biology, Kyoto University, Kyoto 606-8502, Japan.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: bernd.fakler{at}physiologie.uni-freiburg.de (B.F.) or nikolaj.kloecker{at}physiologie.uni-freiburg.de (N.K.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Differential requirement for NMDAR activity in SAP97{beta}-mediated regulation of the number and strength of glutamatergic AMPAR-containing synapses.
M. Liu, L. D. Lewis, R. Shi, E. N. Brown, and W. Xu (2014)
J Neurophysiol 111, 648-658
   Abstract »    Full Text »    PDF »
Functional properties of extrasynaptic AMPA and NMDA receptors during postnatal hippocampal neurogenesis.
C. Schmidt-Salzmann, L. Li, and J. Bischofberger (2014)
J. Physiol. 592, 125-140
   Abstract »    Full Text »    PDF »
Distance-Dependent Scaling of AMPARs Is Cell-Autonomous and GluA2 Dependent.
S. L. Shipman, B. E. Herring, Y. H. Suh, K. W. Roche, and R. A. Nicoll (2013)
J. Neurosci. 33, 13312-13319
   Abstract »    Full Text »    PDF »
In Silico Screening for Palmitoyl Substrates Reveals a Role for DHHC1/3/10 (zDHHC1/3/11)-mediated Neurochondrin Palmitoylation in Its Targeting to Rab5-positive Endosomes.
S. Oku, N. Takahashi, Y. Fukata, and M. Fukata (2013)
J. Biol. Chem. 288, 19816-19829
   Abstract »    Full Text »    PDF »
Ligand-Gating by Ca2+ Is Rate Limiting for Physiological Operation of BKCa Channels.
H. Berkefeld and B. Fakler (2013)
J. Neurosci. 33, 7358-7367
   Abstract »    Full Text »    PDF »
Auxiliary subunits provide new insights into regulation of AMPA receptor trafficking.
A. Sumioka (2013)
J. Biochem. 153, 331-337
   Abstract »    Full Text »    PDF »
AMPA receptor/TARP stoichiometry visualized by single-molecule subunit counting.
P. Hastie, M. H. Ulbrich, H.-L. Wang, R. J. Arant, A. G. Lau, Z. Zhang, E. Y. Isacoff, and L. Chen (2013)
PNAS 110, 5163-5168
   Abstract »    Full Text »    PDF »
Neurobeachin regulates neurotransmitter receptor trafficking to synapses.
R. Nair, J. Lauks, S. Jung, N. E. Cooke, H. de Wit, N. Brose, M. W. Kilimann, M. Verhage, and J. Rhee (2013)
J. Cell Biol. 200, 61-80
   Abstract »    Full Text »    PDF »
TARP-associated AMPA receptors display an increased maximum channel conductance and multiple kinetically distinct open states.
C. Shelley, M. Farrant, and S. G. Cull-Candy (2012)
J. Physiol. 590, 5723-5738
   Abstract »    Full Text »    PDF »
Enhanced NMDA Receptor-Dependent Thalamic Excitation and Network Oscillations in Stargazer Mice.
C. J. Lacey, A. Bryant, J. Brill, and J. R. Huguenard (2012)
J. Neurosci. 32, 11067-11081
   Abstract »    Full Text »    PDF »
Cornichons Modify Channel Properties of Recombinant and Glial AMPA Receptors.
I. D. Coombs, D. Soto, M. Zonouzi, M. Renzi, C. Shelley, M. Farrant, and S. G. Cull-Candy (2012)
J. Neurosci. 32, 9796-9804
   Abstract »    Full Text »    PDF »
Drosophila Neto is essential for clustering glutamate receptors at the neuromuscular junction.
Y.-J. Kim, H. Bao, L. Bonanno, B. Zhang, and M. Serpe (2012)
Genes & Dev. 26, 974-987
   Abstract »    Full Text »    PDF »
Synaptic Neurotransmitter-Gated Receptors.
T. G. Smart and P. Paoletti (2012)
Cold Spring Harb Perspect Biol 4, a009662
   Abstract »    Full Text »    PDF »
Contactin-associated Protein 1 (Caspr1) Regulates the Traffic and Synaptic Content of {alpha}-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA)-type Glutamate Receptors.
S. D. Santos, O. Iuliano, L. Ribeiro, J. Veran, J. S. Ferreira, P. Rio, C. Mulle, C. B. Duarte, and A. L. Carvalho (2012)
J. Biol. Chem. 287, 6868-6877
   Abstract »    Full Text »    PDF »
Extending the Dynamic Range of Label-free Mass Spectrometric Quantification of Affinity Purifications.
W. Bildl, A. Haupt, C. S. Muller, M. L. Biniossek, J. O. Thumfart, B. Huber, B. Fakler, and U. Schulte (2012)
Mol. Cell. Proteomics 11, M111.007955
   Abstract »    Full Text »    PDF »
RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway.
D. Zhang, N. R. Isack, D. R. Glodowski, J. Liu, C. C.-H. Chen, X. Z. S. Xu, B. D. Grant, and C. Rongo (2012)
J. Cell Biol. 196, 85-101
   Abstract »    Full Text »    PDF »
Defined criteria for auxiliary subunits of glutamate receptors.
D. Yan and S. Tomita (2012)
J. Physiol. 590, 21-31
   Abstract »    Full Text »    PDF »
Redefining the classification of AMPA-selective ionotropic glutamate receptors.
D. Bowie (2012)
J. Physiol. 590, 49-61
   Abstract »    Full Text »    PDF »
Ca2+ permeable AMPA receptors switch allegiances: mechanisms and consequences.
S. J. Liu and I. Savtchouk (2012)
J. Physiol. 590, 13-20
   Abstract »    Full Text »    PDF »
GluA4 is indispensable for driving fast neurotransmission across a high-fidelity central synapse.
Y.-M. Yang, J. Aitoubah, A. M. Lauer, M. Nuriya, K. Takamiya, Z. Jia, B. J. May, R. L. Huganir, and L.-Y. Wang (2011)
J. Physiol. 589, 4209-4227
   Abstract »    Full Text »    PDF »
Stargazin-related protein {gamma}7 is associated with signalling endosomes in superior cervical ganglion neurons and modulates neurite outgrowth.
D. Waithe, L. Ferron, and A. C. Dolphin (2011)
J. Cell Sci. 124, 2049-2057
   Abstract »    Full Text »    PDF »
Cornichon-2 Modulates AMPA Receptor-Transmembrane AMPA Receptor Regulatory Protein Assembly to Dictate Gating and Pharmacology.
M. B. Gill, A. S. Kato, M. F. Roberts, H. Yu, H. Wang, S. Tomita, and D. S. Bredt (2011)
J. Neurosci. 31, 6928-6938
   Abstract »    Full Text »    PDF »
Transmembrane AMPA Receptor Regulatory Proteins and Cornichon-2 Allosterically Regulate AMPA Receptor Antagonists and Potentiators.
D. A. Schober, M. B. Gill, H. Yu, D. L. Gernert, M. W. Jeffries, P. L. Ornstein, A. S. Kato, C. C. Felder, and D. S. Bredt (2011)
J. Biol. Chem. 286, 13134-13142
   Abstract »    Full Text »    PDF »
Ca2+-Activated K+ Channels: From Protein Complexes to Function.
H. Berkefeld, B. Fakler, and U. Schulte (2010)
Physiol Rev 90, 1437-1459
   Abstract »    Full Text »    PDF »
Functional comparison of the effects of TARPs and cornichons on AMPA receptor trafficking and gating.
Y. Shi, Y. H. Suh, A. D. Milstein, K. Isozaki, S. M. Schmid, K. W. Roche, and R. A. Nicoll (2010)
PNAS 107, 16315-16319
   Abstract »    Full Text »    PDF »
AMPA receptors gate spine Ca2+ transients and spike-timing-dependent potentiation.
N. Holbro, A. Grunditz, J. S. Wiegert, and T. G. Oertner (2010)
PNAS 107, 15975-15980
   Abstract »    Full Text »    PDF »
Glutamate Receptor Ion Channels: Structure, Regulation, and Function.
S. F. Traynelis, L. P. Wollmuth, C. J. McBain, F. S. Menniti, K. M. Vance, K. K. Ogden, K. B. Hansen, H. Yuan, S. J. Myers, and R. Dingledine (2010)
Pharmacol. Rev. 62, 405-496
   Abstract »    Full Text »    PDF »
Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain.
C. S. Muller, A. Haupt, W. Bildl, J. Schindler, H.-G. Knaus, M. Meissner, B. Rammner, J. Striessnig, V. Flockerzi, B. Fakler, et al. (2010)
PNAS 107, 14950-14957
   Abstract »    Full Text »    PDF »
AMPA receptor desensitization mutation results in severe developmental phenotypes and early postnatal lethality.
L. A. Christie, T. A. Russell, J. Xu, L. Wood, G. M. G. Shepherd, and A. Contractor (2010)
PNAS 107, 9412-9417
   Abstract »    Full Text »    PDF »
Selective Excitatory Actions of DNQX and CNQX in Rat Thalamic Neurons.
S. H. Lee, G. Govindaiah, and C. L. Cox (2010)
J Neurophysiol 103, 1728-1734
   Abstract »    Full Text »    PDF »
Gating Modes in AMPA Receptors.
M. L. Prieto and L. P. Wollmuth (2010)
J. Neurosci. 30, 4449-4459
   Abstract »    Full Text »    PDF »
AMPA Receptors--Another Twist?.
M. Farrant and S. G. Cull-Candy (2010)
Science 327, 1463-1465
   Abstract »    Full Text »    PDF »
CKAMP44: A Brain-Specific Protein Attenuating Short-Term Synaptic Plasticity in the Dentate Gyrus.
J. von Engelhardt, V. Mack, R. Sprengel, N. Kavenstock, K. W. Li, Y. Stern-Bach, A. B. Smit, P. H. Seeburg, and H. Monyer (2010)
Science 327, 1518-1522
   Abstract »    Full Text »    PDF »
Contribution of the Global Subunit Structure and Stargazin on the Maturation of AMPA Receptors.
N. F. Shanks, T. Maruo, A. N. Farina, M. H. Ellisman, and T. Nakagawa (2010)
J. Neurosci. 30, 2728-2740
   Abstract »    Full Text »    PDF »
Regulation of Ionotropic Glutamate Receptors by Their Auxiliary Subunits.
S. Tomita (2010)
Physiology 25, 41-49
   Abstract »    Full Text »    PDF »
Assembly and Stoichiometry of the AMPA Receptor and Transmembrane AMPA Receptor Regulatory Protein Complex.
K. S. Kim, D. Yan, and S. Tomita (2010)
J. Neurosci. 30, 1064-1072
   Abstract »    Full Text »    PDF »
Neurophysiology of inhibitory and excitatory amino acid receptors.
D. Bowie and R. A. McKinney (2010)
J. Physiol. 588, 29-32
   Full Text »    PDF »
Modulation of Agonist Binding to AMPA Receptors by 1-(1,4-Benzodioxan-6-ylcarbonyl)piperidine (CX546): Differential Effects across Brain Regions and GluA1-4/Transmembrane AMPA Receptor Regulatory Protein Combinations.
K. E. Montgomery, M. Kessler, and A. C. Arai (2009)
J. Pharmacol. Exp. Ther. 331, 965-974
   Abstract »    Full Text »    PDF »
S-nitrosylation of stargazin regulates surface expression of AMPA-glutamate neurotransmitter receptors.
B. Selvakumar, R. L. Huganir, and S. H. Snyder (2009)
PNAS 106, 16440-16445
   Abstract »    Full Text »    PDF »
The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation.
S. M. Schmid, S. Kott, C. Sager, T. Huelsken, and M. Hollmann (2009)
PNAS 106, 10320-10325
   Abstract »    Full Text »    PDF »
NEUROSCIENCE: More AMPAR Garnish.
C. Tigaret and D. Choquet (2009)
Science 323, 1295-1296
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882