Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 324 (5923): 105-108

Copyright © 2009 by the American Association for the Advancement of Science

Use-Dependent Plasticity in Clock Neurons Regulates Sleep Need in Drosophila

Jeffrey M. Donlea, Narendrakumar Ramanan, Paul J. Shaw*

Abstract: Sleep is important for memory consolidation and is responsive to waking experience. Clock circuitry is uniquely positioned to coordinate interactions between processes underlying memory and sleep need. Flies increase sleep both after exposure to an enriched social environment and after protocols that induce long-term memory. We found that flies mutant for rutabaga, period, and blistered were deficient for experience-dependent increases in sleep. Rescue of each of these genes within the ventral lateral neurons (LNVs) restores increased sleep after social enrichment. Social experiences that induce increased sleep were associated with an increase in the number of synaptic terminals in the LNV projections into the medulla. The number of synaptic terminals was reduced during sleep and this decline was prevented by sleep deprivation.

Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, Missouri, USA.

* To whom correspondence should be addressed. E-mail: shawp{at}

A Dynamic Deep Sleep Stage in Drosophila.
B. van Alphen, M. H. W. Yap, L. Kirszenblat, B. Kottler, and B. van Swinderen (2013)
J. Neurosci. 33, 6917-6927
   Abstract »    Full Text »    PDF »
About Sleep's Role in Memory.
B. Rasch and J. Born (2013)
Physiol Rev 93, 681-766
   Abstract »    Full Text »    PDF »
Fan-shaped body neurons are involved in period-dependent regulation of long-term courtship memory in Drosophila.
T. Sakai, S. Inami, S. Sato, and T. Kitamoto (2012)
Learn. Mem. 19, 571-574
   Abstract »    Full Text »    PDF »
foraging alters resilience/vulnerability to sleep disruption and starvation in Drosophila.
J. Donlea, A. Leahy, M. S. Thimgan, Y. Suzuki, B. N. Hughson, M. B. Sokolowski, and P. J. Shaw (2012)
PNAS 109, 2613-2618
   Abstract »    Full Text »    PDF »
GABAergic Synaptic Plasticity during a Developmentally Regulated Sleep-Like State in C. elegans.
N. S. Dabbish and D. M. Raizen (2011)
J. Neurosci. 31, 15932-15943
   Abstract »    Full Text »    PDF »
Pan-Neuronal Knockdown of Calcineurin Reduces Sleep in the Fruit Fly, Drosophila melanogaster.
J. Tomita, M. Mitsuyoshi, T. Ueno, Y. Aso, H. Tanimoto, Y. Nakai, T. Aigaki, S. Kume, and K. Kume (2011)
J. Neurosci. 31, 13137-13146
   Abstract »    Full Text »    PDF »
Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?.
J. A. Lesku, A. L. Vyssotski, D. Martinez-Gonzalez, C. Wilzeck, and N. C. Rattenborg (2011)
Proc R Soc B 278, 2419-2428
   Abstract »    Full Text »    PDF »
Inducing Sleep by Remote Control Facilitates Memory Consolidation in Drosophila.
J. M. Donlea, M. S. Thimgan, Y. Suzuki, L. Gottschalk, and P. J. Shaw (2011)
Science 332, 1571-1576
   Abstract »    Full Text »    PDF »
Sleep and Synaptic Homeostasis: Structural Evidence in Drosophila.
D. Bushey, G. Tononi, and C. Cirelli (2011)
Science 332, 1576-1581
   Abstract »    Full Text »    PDF »
Slow Wave Activity During Sleep: Functional and Therapeutic Implications.
R. W. Greene and M. G. Frank (2010)
Neuroscientist 16, 618-633
   Abstract »    PDF »
Direct Evidence for Wake-Related Increases and Sleep-Related Decreases in Synaptic Strength in Rodent Cortex.
Z.-W. Liu, U. Faraguna, C. Cirelli, G. Tononi, and X.-B. Gao (2010)
J. Neurosci. 30, 8671-8675
   Abstract »    Full Text »    PDF »
Genetic analysis of sleep.
A. Crocker and A. Sehgal (2010)
Genes & Dev. 24, 1220-1235
   Abstract »    Full Text »    PDF »
The Transcription Factor Mef2 Is Required for Normal Circadian Behavior in Drosophila.
F. J. Blanchard, B. Collins, S. A. Cyran, D. H. Hancock, M. V. Taylor, and J. Blau (2010)
J. Neurosci. 30, 5855-5865
   Abstract »    Full Text »    PDF »
The circadian output gene takeout is regulated by Pdp1{varepsilon}.
J. Benito, V. Hoxha, C. Lama, A. A. Lazareva, J.-F. Ferveur, P. E. Hardin, and B. Dauwalder (2010)
PNAS 107, 2544-2549
   Abstract »    Full Text »    PDF »
Courtship learning in Drosophila melanogaster: Diverse plasticity of a reproductive behavior.
L. C. Griffith and A. Ejima (2009)
Learn. Mem. 16, 743-750
   Abstract »    Full Text »    PDF »
Amyloid-{beta} Dynamics Are Regulated by Orexin and the Sleep-Wake Cycle.
J.-E. Kang, M. M. Lim, R. J. Bateman, J. J. Lee, L. P. Smyth, J. R. Cirrito, N. Fujiki, S. Nishino, and D. M. Holtzman (2009)
Science 326, 1005-1007
   Abstract »    Full Text »    PDF »
Circadian rhythms and memory: not so simple as cogs and gears.
K. L. Eckel-Mahan and D. R. Storm (2009)
EMBO Rep. 10, 584-591
   Abstract »    Full Text »    PDF »
Widespread Changes in Synaptic Markers as a Function of Sleep and Wakefulness in Drosophila.
G. F. Gilestro, G. Tononi, and C. Cirelli (2009)
Science 324, 109-112
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882