Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 324 (5923): 89-91

Copyright © 2009 by the American Association for the Advancement of Science

Priming in Systemic Plant Immunity

Ho Won Jung,1 Timothy J. Tschaplinski,2 Lin Wang,3* Jane Glazebrook,3 Jean T. Greenberg1{dagger}

Abstract: Plants possess inducible systemic defense responses when locally infected by pathogens. Bacterial infection results in the increased accumulation of the mobile metabolite azelaic acid, a nine-carbon dicarboxylic acid, in the vascular sap of Arabidopsis that confers local and systemic resistance against the pathogen Pseudomonas syringae. Azelaic acid primes plants to accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of the AZELAIC ACID INDUCED 1 (AZI1) gene, which is induced by azelaic acid, results in the specific loss of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction in plants. Furthermore, the predicted secreted protein AZI1 is also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 are components of plant systemic immunity involved in priming defenses.

1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57th Street EBC410, Chicago, IL 60637, USA.
2 Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN 37831–6341, USA.
3 Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, St. Paul, MN 55108, USA.

* Present address: Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853–1801, USA.

{dagger} To whom correspondence should be addressed. E-mail: jgreenbe{at}midway.uchicago.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Salt Stress in Arabidopsis: Lipid Transfer Protein AZI1 and Its Control by Mitogen-Activated Protein Kinase MPK3.
A. Pitzschke, S. Datta, and H. Persak (2014)
Mol Plant 7, 722-738
   Abstract »    Full Text »    PDF »
Chemical inducers of systemic immunity in plants.
Q.-m. Gao, A. Kachroo, and P. Kachroo (2014)
J. Exp. Bot. 65, 1849-1855
   Abstract »    Full Text »    PDF »
ROS as key players in plant stress signalling.
A. Baxter, R. Mittler, and N. Suzuki (2014)
J. Exp. Bot. 65, 1229-1240
   Abstract »    Full Text »    PDF »
Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in Arabidopsis.
Y. Chen, H. Shen, M. Wang, Q. Li, and Z. He (2013)
Acta Biochim Biophys Sin 45, 827-836
   Abstract »    Full Text »    PDF »
Temporal-Spatial Interaction between Reactive Oxygen Species and Abscisic Acid Regulates Rapid Systemic Acclimation in Plants.
N. Suzuki, G. Miller, C. Salazar, H. A. Mondal, E. Shulaev, D. F. Cortes, J. L. Shuman, X. Luo, J. Shah, K. Schlauch, et al. (2013)
PLANT CELL 25, 3553-3569
   Abstract »    Full Text »    PDF »
Identification of Genes Involved in the Response of Arabidopsis to Simultaneous Biotic and Abiotic Stresses.
N. J. Atkinson, C. J. Lilley, and P. E. Urwin (2013)
Plant Physiology 162, 2028-2041
   Abstract »    Full Text »    PDF »
Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus.
L.-J. Xue, W. Guo, Y. Yuan, E. O. Anino, B. Nyamdari, M. C. Wilson, C. J. Frost, H.-Y. Chen, B. A. Babst, S. A. Harding, et al. (2013)
PLANT CELL 25, 2714-2730
   Abstract »    Full Text »    PDF »
Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany.
C. Wasternack and B. Hause (2013)
Ann. Bot. 111, 1021-1058
   Abstract »    Full Text »    PDF »
Plant Immune Responses Against Viruses: How Does a Virus Cause Disease?.
K. K. Mandadi and K.-B. G. Scholthof (2013)
PLANT CELL 25, 1489-1505
   Abstract »    Full Text »    PDF »
Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis.
L. Guo, H. Yang, X. Zhang, and S. Yang (2013)
J. Exp. Bot. 64, 1755-1767
   Abstract »    Full Text »    PDF »
On the move: induced resistance in monocots.
D. Balmer, C. Planchamp, and B. Mauch-Mani (2013)
J. Exp. Bot. 64, 1249-1261
   Abstract »    Full Text »    PDF »
Pipecolic Acid, an Endogenous Mediator of Defense Amplification and Priming, Is a Critical Regulator of Inducible Plant Immunity.
H. Navarova, F. Bernsdorff, A.-C. Doring, and J. Zeier (2012)
PLANT CELL 24, 5123-5141
   Abstract »    Full Text »    PDF »
The Arabidopsis Mediator Complex Subunit16 Positively Regulates Salicylate-Mediated Systemic Acquired Resistance and Jasmonate/Ethylene-Induced Defense Pathways.
X. Zhang, C. Wang, Y. Zhang, Y. Sun, and Z. Mou (2012)
PLANT CELL 24, 4294-4309
   Abstract »    Full Text »    PDF »
Lipid Profiling of the Arabidopsis Hypersensitive Response Reveals Specific Lipid Peroxidation and Fragmentation Processes: Biogenesis of Pimelic and Azelaic Acid.
M. Zoeller, N. Stingl, M. Krischke, A. Fekete, F. Waller, S. Berger, and M. J. Mueller (2012)
Plant Physiology 160, 365-378
   Abstract »    Full Text »    PDF »
Final Report of the Cosmetic Ingredient Review Expert Panel on the Safety Assessment of Dicarboxylic Acids, Salts, and Esters.
M. M. Fiume, H. eldreth, W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. Liebler, J. G. Marks Jr, R. C. Shank, T. J. Slaga, et al. (2012)
International Journal of Toxicology 31, 5S-76S
   Abstract »    Full Text »    PDF »
Role of 9-Lipoxygenase and {alpha}-Dioxygenase Oxylipin Pathways as Modulators of Local and Systemic Defense.
J. Vicente, T. Cascon, B. Vicedo, P. Garcia-Agustin, M. Hamberg, and C. Castresana (2012)
Mol Plant 5, 914-928
   Abstract »    Full Text »    PDF »
Heat Shock Factor HsfB1 Primes Gene Transcription and Systemic Acquired Resistance in Arabidopsis.
T. Pick, M. Jaskiewicz, C. Peterhansel, and U. Conrath (2012)
Plant Physiology 159, 52-55
   Full Text »    PDF »
Insight into the Molecular Evolution of Non-Specific Lipid Transfer Proteins via Comparative Analysis Between Rice and Sorghum.
H. W. Wang, S.-G. Hwang, T. Karuppanapandian, A. Liu, W. Kim, and C. S. Jang (2012)
DNA Res 19, 179-194
   Abstract »    Full Text »    PDF »
Loss of Function of FATTY ACID DESATURASE7 in Tomato Enhances Basal Aphid Resistance in a Salicylate-Dependent Manner.
C. A. Avila, L. M. Arevalo-Soliz, L. Jia, D. A. Navarre, Z. Chen, G. A. Howe, Q.-W. Meng, J. E. Smith, and F. L. Goggin (2012)
Plant Physiology 158, 2028-2041
   Abstract »    Full Text »    PDF »
Distinct carbohydrate and lipid-based molecular patterns within lipopolysaccharides from Burkholderia cepacia contribute to defense-associated differential gene expression in Arabidopsis thaliana.
N. E. Madala, A. Molinaro, and I. A. Dubery (2012)
Innate Immunity 18, 140-154
   Abstract »    Full Text »    PDF »
Next-Generation Systemic Acquired Resistance.
E. Luna, T. J. A. Bruce, M. R. Roberts, V. Flors, and J. Ton (2012)
Plant Physiology 158, 844-853
   Abstract »    Full Text »    PDF »
A Deletion in NRT2.1 Attenuates Pseudomonas syringae-Induced Hormonal Perturbation, Resulting in Primed Plant Defenses.
G. Camanes, V. Pastor, M. Cerezo, J. Garcia-Andrade, B. Vicedo, P. Garcia-Agustin, and V. Flors (2012)
Plant Physiology 158, 1054-1066
   Abstract »    Full Text »    PDF »
The Extent to Which Methyl Salicylate Is Required for Signaling Systemic Acquired Resistance Is Dependent on Exposure to Light after Infection.
P.-P. Liu, C. C. von Dahl, and D. F. Klessig (2011)
Plant Physiology 157, 2216-2226
   Abstract »    Full Text »    PDF »
Brush and Spray: A High-Throughput Systemic Acquired Resistance Assay Suitable for Large-Scale Genetic Screening.
B. Jing, S. Xu, M. Xu, Y. Li, S. Li, J. Ding, and Y. Zhang (2011)
Plant Physiology 157, 973-980
   Abstract »    Full Text »    PDF »
UV-C-Irradiated Arabidopsis and Tobacco Emit Volatiles That Trigger Genomic Instability in Neighboring Plants.
Y. Yao, C. H. Danna, F. J. Zemp, V. Titov, O. N. Ciftci, R. Przybylski, F. M. Ausubel, and I. Kovalchuk (2011)
PLANT CELL 23, 3842-3852
   Abstract »    Full Text »    PDF »
Pollen tube growth and guidance: roles of small, secreted proteins.
K. Chae and E. M. Lord (2011)
Ann. Bot. 108, 627-636
   Abstract »    Full Text »    PDF »
Identification of genes involved in cell wall biogenesis in grasses by differential gene expression profiling of elongating and non-elongating maize internodes.
M. Bosch, C.-D. Mayer, A. Cookson, and I. S. Donnison (2011)
J. Exp. Bot. 62, 3545-3561
   Abstract »    Full Text »    PDF »
Protection of Arabidopsis thaliana against Leaf-Pathogenic Pseudomonas syringae by Sphingomonas Strains in a Controlled Model System.
G. Innerebner, C. Knief, and J. A. Vorholt (2011)
Appl. Envir. Microbiol. 77, 3202-3210
   Abstract »    Full Text »    PDF »
Discovery and annotation of small proteins using genomics, proteomics, and computational approaches.
X. Yang, T. J. Tschaplinski, G. B. Hurst, S. Jawdy, P. E. Abraham, P. K. Lankford, R. M. Adams, M. B. Shah, R. L. Hettich, E. Lindquist, et al. (2011)
Genome Res. 21, 634-641
   Abstract »    Full Text »    PDF »
Interconnection between Methyl Salicylate and Lipid-Based Long-Distance Signaling during the Development of Systemic Acquired Resistance in Arabidopsis and Tobacco.
P.-P. Liu, C. C. von Dahl, S.-W. Park, and D. F. Klessig (2011)
Plant Physiology 155, 1762-1768
   Full Text »    PDF »
Deciphering the structural and biological properties of the lipid A moiety of lipopolysaccharides from Burkholderia cepacia strain ASP B 2D, in Arabidopsis thaliana.
N. E. Madala, M. R. Leone, A. Molinaro, and I. A. Dubery (2011)
Glycobiology 21, 184-194
   Abstract »    Full Text »    PDF »
A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction.
K. Chae, B. J. Gonong, S.-C. Kim, C. A. Kieslich, D. Morikis, S. Balasubramanian, and E. M. Lord (2010)
J. Exp. Bot. 61, 4277-4290
   Abstract »    Full Text »    PDF »
The glabra1 Mutation Affects Cuticle Formation and Plant Responses to Microbes.
Y. Xia, K. Yu, D. Navarre, K. Seebold, A. Kachroo, and P. Kachroo (2010)
Plant Physiology 154, 833-846
   Abstract »    Full Text »    PDF »
Peroxisomal Hydrogen Peroxide Is Coupled to Biotic Defense Responses by ISOCHORISMATE SYNTHASE1 in a Daylength-Related Manner.
S. Chaouch, G. Queval, S. Vanderauwera, A. Mhamdi, M. Vandorpe, M. Langlois-Meurinne, F. Van Breusegem, P. Saindrenan, and G. Noctor (2010)
Plant Physiology 153, 1692-1705
   Abstract »    Full Text »    PDF »
L-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis.
C.-C. Wu, P. Singh, M.-C. Chen, and L. Zimmerli (2010)
J. Exp. Bot. 61, 995-1002
   Abstract »    Full Text »    PDF »
Arabidopsis Auxin Mutants Are Compromised in Systemic Acquired Resistance and Exhibit Aberrant Accumulation of Various Indolic Compounds.
W. M. Truman, M. H. Bennett, C. G. N. Turnbull, and M. R. Grant (2010)
Plant Physiology 152, 1562-1573
   Abstract »    Full Text »    PDF »
A Gain-of-Function Mutation of Arabidopsis Lipid Transfer Protein 5 Disturbs Pollen Tube Tip Growth and Fertilization.
K. Chae, C. A. Kieslich, D. Morikis, S.-C. Kim, and E. M. Lord (2009)
PLANT CELL 21, 3902-3914
   Abstract »    Full Text »    PDF »
Sending ROS on a Bullet Train.
H. L. Wong and K. Shimamoto (2009)
Science Signaling 2, pe60
   Abstract »    Full Text »    PDF »
The Plant NADPH Oxidase RBOHD Mediates Rapid Systemic Signaling in Response to Diverse Stimuli.
G. Miller, K. Schlauch, R. Tam, D. Cortes, M. A. Torres, V. Shulaev, J. L. Dangl, and R. Mittler (2009)
Science Signaling 2, ra45
   Abstract »    Full Text »    PDF »
The Quest for Long-Distance Signals in Plant Systemic Immunity.
J. E. Parker (2009)
Science Signaling 2, pe31
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882