Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 324 (5925): 381-384

Copyright © 2009 by the American Association for the Advancement of Science

Protection of C. elegans from Anoxia by HYL-2 Ceramide Synthase

Vincent Menuz,1 Kate S. Howell,2,3 Sébastien Gentina,1 Sharon Epstein,2 Isabelle Riezman,2 Monique Fornallaz-Mulhauser,1 Michael O. Hengartner,4 Marie Gomez,5* Howard Riezman,2*{dagger} Jean-Claude Martinou1*{dagger}

Abstract: Oxygen deprivation is rapidly deleterious for most organisms. However, Caenorhabditis elegans has developed the ability to survive anoxia for at least 48 hours. Mutations in the DAF-2/DAF-16 insulin-like signaling pathway promote such survival. We describe a pathway involving the HYL-2 ceramide synthase that acts independently of DAF-2. Loss of the ceramide synthase gene hyl-2 results in increased sensitivity of C. elegans to anoxia. C. elegans has two ceramide synthases, hyl-1 and hyl-2, that participate in ceramide biogenesis and affect its ability to survive anoxic conditions. In contrast to hyl-2(lf) mutants, hyl-1(lf) mutants are more resistant to anoxia than normal animals. HYL-1 and HYL-2 have complementary specificities for fatty acyl chains. These data indicate that specific ceramides produced by HYL-2 confer resistance to anoxia.

1 Department of Cell Biology, University of Geneva, CH-1211 Geneva 4, Switzerland.
2 Department of Biochemistry, University of Geneva, CH-1211 Geneva 4, Switzerland.
3 Faculty of Land and Food Resource, University of Melbourne, Parkville Victoria 3010, Australia.
4 Institute of Molecular Biology, University of Zurich, Winterthurerstrasse, CH-8057 Zurich, Switzerland.
5 Department of Zoology and Animal Biology, University of Geneva, CH-1211 Geneva 4, Switzerland.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: Howard.Riezman{at}unige.ch (H.R.); Jean-Claude.Martinou{at}unige.ch (J.-C.M.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Fetal asphyxia induces acute and persisting changes in the ceramide metabolism in rat brain.
E. Vlassaks, C. Mencarelli, M. Nikiforou, E. Strackx, M. J. Ferraz, J. M. Aerts, M. H. De Baets, P. Martinez-Martinez, and A. W. D. Gavilanes (2013)
J. Lipid Res. 54, 1825-1833
   Abstract »    Full Text »    PDF »
A novel sphingolipid-TORC1 pathway critically promotes postembryonic development in Caenorhabditis elegans.
H. Zhu, H. Shen, A. K. Sewell, M. Kniazeva, and M. Han (2013)
eLife Sci 2, e00429
   Abstract »    Full Text »    PDF »
Sphingolipid Homeostasis in the Endoplasmic Reticulum and Beyond.
D. K. Breslow (2013)
Cold Spring Harb Perspect Biol 5, a013326
   Abstract »    Full Text »    PDF »
Localized Sphingolipid Signaling at Presynaptic Terminals Is Regulated by Calcium Influx and Promotes Recruitment of Priming Factors.
J. P. Chan and D. Sieburth (2012)
J. Neurosci. 32, 17909-17920
   Abstract »    Full Text »    PDF »
Recruitment of sphingosine kinase to presynaptic terminals by a conserved muscarinic signaling pathway promotes neurotransmitter release.
J. P. Chan, Z. Hu, and D. Sieburth (2012)
Genes & Dev. 26, 1070-1085
   Abstract »    Full Text »    PDF »
Activation of the unfolded protein response pathway causes ceramide accumulation in yeast and INS-1E insulinoma cells.
S. Epstein, C. L. Kirkpatrick, G. A. Castillon, M. Muniz, I. Riezman, F. P. A. David, C. B. Wollheim, and H. Riezman (2012)
J. Lipid Res. 53, 412-420
   Abstract »    Full Text »    PDF »
Loss of ceramide synthase 3 causes lethal skin barrier disruption.
R. Jennemann, M. Rabionet, K. Gorgas, S. Epstein, A. Dalpke, U. Rothermel, A. Bayerle, F. van der Hoeven, S. Imgrund, J. Kirsch, et al. (2012)
Hum. Mol. Genet. 21, 586-608
   Abstract »    Full Text »    PDF »
Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players.
L. L. Kujjo and G. I. Perez (2012)
Reproduction 143, 1-10
   Abstract »    Full Text »    PDF »
Autophagy Induced by Deficiency of Sphingosine-1-phosphate Phosphohydrolase 1 Is Switched to Apoptosis by Calpain-mediated Autophagy-related Gene 5 (Atg5) Cleavage.
S. Lepine, J. C. Allegood, Y. Edmonds, S. Milstien, and S. Spiegel (2011)
J. Biol. Chem. 286, 44380-44390
   Abstract »    Full Text »    PDF »
Dihydroceramide-based Response to Hypoxia.
C. M. Devlin, T. Lahm, W. C. Hubbard, M. Van Demark, K. C. Wang, X. Wu, A. Bielawska, L. M. Obeid, M. Ivan, and I. Petrache (2011)
J. Biol. Chem. 286, 38069-38078
   Abstract »    Full Text »    PDF »
Results of a Phase II Trial of Gemcitabine Plus Doxorubicin in Patients with Recurrent Head and Neck Cancers: Serum C18-Ceramide as a Novel Biomarker for Monitoring Response.
S. A. Saddoughi, E. Garrett-Mayer, U. Chaudhary, P. E. O'Brien, L. B. Afrin, T. A. Day, M. B. Gillespie, A. K. Sharma, C. S. Wilhoit, R. Bostick, et al. (2011)
Clin. Cancer Res. 17, 6097-6105
   Abstract »    Full Text »    PDF »
Many Ceramides.
Y. A. Hannun and L. M. Obeid (2011)
J. Biol. Chem. 286, 27855-27862
   Abstract »    Full Text »    PDF »
Differential Molecular Responses of Rice and Wheat Coleoptiles to Anoxia Reveal Novel Metabolic Adaptations in Amino Acid Metabolism for Tissue Tolerance.
R. N. Shingaki-Wells, S. Huang, N. L. Taylor, A. J. Carroll, W. Zhou, and A. H. Millar (2011)
Plant Physiology 156, 1706-1724
   Abstract »    Full Text »    PDF »
Ceramide Synthase-dependent Ceramide Generation and Programmed Cell Death: INVOLVEMENT OF SALVAGE PATHWAY IN REGULATING POSTMITOCHONDRIAL EVENTS.
T. D. Mullen, R. W. Jenkins, C. J. Clarke, J. Bielawski, Y. A. Hannun, and L. M. Obeid (2011)
J. Biol. Chem. 286, 15929-15942
   Abstract »    Full Text »    PDF »
Distribution and Functions of Sterols and Sphingolipids.
J. T. Hannich, K. Umebayashi, and H. Riezman (2011)
Cold Spring Harb Perspect Biol 3, a004762
   Abstract »    Full Text »    PDF »
Two Pathways of Sphingolipid Biosynthesis Are Separated in the Yeast Pichia pastoris.
P. Ternes, T. Wobbe, M. Schwarz, S. Albrecht, K. Feussner, I. Riezman, J. M. Cregg, E. Heinz, H. Riezman, I. Feussner, et al. (2011)
J. Biol. Chem. 286, 11401-11414
   Abstract »    Full Text »    PDF »
Regulation of Anoxic Death in Caenorhabditis elegans by Mammalian Apoptosis Signal-Regulating Kinase (ASK) Family Proteins.
T. Hayakawa, K. Kato, R. Hayakawa, N. Hisamoto, K. Matsumoto, K. Takeda, and H. Ichijo (2011)
Genetics 187, 785-792
   Abstract »    Full Text »    PDF »
A Critical Role for Ceramide Synthase 2 in Liver Homeostasis: II. INSIGHTS INTO MOLECULAR CHANGES LEADING TO HEPATOPATHY.
Y. Pewzner-Jung, O. Brenner, S. Braun, E. L. Laviad, S. Ben-Dor, E. Feldmesser, S. Horn-Saban, D. Amann-Zalcenstein, C. Raanan, T. Berkutzki, et al. (2010)
J. Biol. Chem. 285, 10911-10923
   Abstract »    Full Text »    PDF »
Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways.
C. E. Senkal, S. Ponnusamy, J. Bielawski, Y. A. Hannun, and B. Ogretmen (2010)
FASEB J 24, 296-308
   Abstract »    Full Text »    PDF »
CELL BIOLOGY: Ceramides--Friend or Foe in Hypoxia?.
C. M. Crowder (2009)
Science 324, 343-344
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882