Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 324 (5930): 1068-1071

Copyright © 2009 by the American Association for the Advancement of Science

Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins

Sang-Youl Park,1,* Pauline Fung,2,* Noriyuki Nishimura,4,{dagger} Davin R. Jensen,8,{dagger} Hiroaki Fujii,1 Yang Zhao,2 Shelley Lumba,2 Julia Santiago,5 Americo Rodrigues,5 Tsz-fung F. Chow,2 Simon E. Alfred,2 Dario Bonetta,6 Ruth Finkelstein,7 Nicholas J. Provart,2,3 Darrell Desveaux,2,3 Pedro L. Rodriguez,5 Peter McCourt,2 Jian-Kang Zhu,1 Julian I. Schroeder,4 Brian F. Volkman,8 Sean R. Cutler1,9,10,11,{ddagger}

Abstract: Type 2C protein phosphatases (PP2Cs) are vitally involved in abscisic acid (ABA) signaling. Here, we show that a synthetic growth inhibitor called pyrabactin functions as a selective ABA agonist. Pyrabactin acts through PYRABACTIN RESISTANCE 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs, which are necessary for both pyrabactin and ABA signaling in vivo. We show that ABA binds to PYR1, which in turn binds to and inhibits PP2Cs. We conclude that PYR/PYLs are ABA receptors functioning at the apex of a negative regulatory pathway that controls ABA signaling by inhibiting PP2Cs. Our results illustrate the power of the chemical genetic approach for sidestepping genetic redundancy.

1 Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA.
2 Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
3 Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
4 Division of Biological Sciences, Cell and Developmental Biology Section, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
5 Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Avenida de los Naranjos, Edificio CPI, 8E, ES-46022 Valencia, Spain.
6 Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada.
7 Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
8 Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
9 Center for Plant Cell Biology, University of California at Riverside, Riverside, CA 92521, USA.
10 Institute for Genome Biology, University of California at Riverside, Riverside, CA 92521, USA.
11 Department of Chemistry, University of California at Riverside, Riverside, CA 92521, USA.

* These authors contributed equally to the work described.

{dagger} These authors contributed equally to the work described.

{ddagger} To whom correspondence should be addressed. E-mail: sean.cutler{at}

Life and death under salt stress: same players, different timing?.
A. Ismail, S. Takeda, and P. Nick (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action.
S. Pandey, R.-S. Wang, L. Wilson, S. Li, Z. Zhao, T. E. Gookin, S. M. Assmann, and R. Albert (2014)
Mol Syst Biol 6, 372
   Abstract »    Full Text »    PDF »
Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors.
S. Fuchs, S. V. Tischer, C. Wunschel, A. Christmann, and E. Grill (2014)
PNAS 111, 5741-5746
   Abstract »    Full Text »    PDF »
Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.
A. Harfouche, R. Meilan, and A. Altman (2014)
Tree Physiol
   Abstract »    Full Text »    PDF »
Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana.
X. Yuan, Y. Li, S. Liu, F. Xia, X. Li, and B. Qi (2014)
J. Exp. Bot. 65, 1637-1649
   Abstract »    Full Text »    PDF »
Abscisic Acid Suppresses Hypocotyl Elongation by Dephosphorylating Plasma Membrane H+-ATPase in Arabidopsis thaliana.
Y. Hayashi, K. Takahashi, S.-i. Inoue, and T. Kinoshita (2014)
Plant Cell Physiol. 55, 845-853
   Abstract »    Full Text »    PDF »
Abscisic Acid Flux Alterations Result in Differential Abscisic Acid Signaling Responses and Impact Assimilation Efficiency in Barley under Terminal Drought Stress.
C. Seiler, V. T. Harshavardhan, P. S. Reddy, G. Hensel, J. Kumlehn, L. Eschen-Lippold, K. Rajesh, V. Korzun, U. Wobus, J. Lee, et al. (2014)
Plant Physiology 164, 1677-1696
   Abstract »    Full Text »    PDF »
The Arabidopsis thaliana FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth.
G. J. Seifert, H. Xue, and T. Acet (2014)
Ann. Bot.
   Abstract »    Full Text »    PDF »
Glutamate signalling in roots.
B. G. Forde (2014)
J. Exp. Bot. 65, 779-787
   Abstract »    Full Text »    PDF »
Abscisic Acid Regulates Early Seed Development in Arabidopsis by ABI5-Mediated Transcription of SHORT HYPOCOTYL UNDER BLUE1.
Z. J. Cheng, X. Y. Zhao, X. X. Shao, F. Wang, C. Zhou, Y. G. Liu, Y. Zhang, and X. S. Zhang (2014)
PLANT CELL 26, 1053-1068
   Abstract »    Full Text »    PDF »
Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression.
H. Kim, K. Lee, H. Hwang, N. Bhatnagar, D.-Y. Kim, I. S. Yoon, M.-O. Byun, S. T. Kim, K.-H. Jung, and B.-G. Kim (2014)
J. Exp. Bot. 65, 453-464
   Abstract »    Full Text »    PDF »
ABD1 Is an Arabidopsis DCAF Substrate Receptor for CUL4-DDB1-Based E3 Ligases That Acts as a Negative Regulator of Abscisic Acid Signaling.
K.-I. Seo, J.-H. Lee, C. D. Nezames, S. Zhong, E. Song, M.-O. Byun, and X. W. Deng (2014)
PLANT CELL 26, 695-711
   Abstract »    Full Text »    PDF »
FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis.
R. Waadt, K. Hitomi, N. Nishimura, C. Hitomi, S. R. Adams, E. D. Getzoff, and J. I. Schroeder (2014)
eLife Sci 3, e01739
   Abstract »    Full Text »    PDF »
Abscisic acid dynamics in roots detected with genetically encoded FRET sensors.
A. M. Jones, J. A. Danielson, S. N. ManojKumar, V. Lanquar, G. Grossmann, and W. B. Frommer (2014)
eLife Sci 3, e01741
   Abstract »    Full Text »    PDF »
Plant biologists FRET over stress.
W.-G. Choi and S. Gilroy (2014)
eLife Sci 3, e02763
   Abstract »    Full Text »    PDF »
Regulation of Drought Tolerance by the F-Box Protein MAX2 in Arabidopsis.
Q. Bu, T. Lv, H. Shen, P. Luong, J. Wang, Z. Wang, Z. Huang, L. Xiao, C. Engineer, T. H. Kim, et al. (2014)
Plant Physiology 164, 424-439
   Abstract »    Full Text »    PDF »
The Basic Leucine Zipper Transcription Factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 Is an Important Transcriptional Regulator of Abscisic Acid-Dependent Grape Berry Ripening Processes.
P. Nicolas, D. Lecourieux, C. Kappel, S. Cluzet, G. Cramer, S. Delrot, and F. Lecourieux (2014)
Plant Physiology 164, 365-383
   Abstract »    Full Text »    PDF »
The Strawberry Pathogenesis-related 10 (PR-10) Fra a Proteins Control Flavonoid Biosynthesis by Binding to Metabolic Intermediates.
A. Casanal, U. Zander, C. Munoz, F. Dupeux, I. Luque, M. A. Botella, W. Schwab, V. Valpuesta, and J. A. Marquez (2013)
J. Biol. Chem. 288, 35322-35332
   Abstract »    Full Text »    PDF »
Role of chromatin in water stress responses in plants.
S.-K. Han and D. Wagner (2013)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Going Green: Phytohormone Mimetics for Drought Rescue.
K. Hitomi, E. D. Getzoff, and J. I. Schroeder (2013)
Plant Physiology 163, 1087-1088
   Full Text »    PDF »
Flower Development under Drought Stress: Morphological and Transcriptomic Analyses Reveal Acute Responses and Long-Term Acclimation in Arabidopsis.
Z. Su, X. Ma, H. Guo, N. L. Sukiran, B. Guo, S. M. Assmann, and H. Ma (2013)
PLANT CELL 25, 3785-3807
   Abstract »    Full Text »    PDF »
ABI1 and PP2CA Phosphatases Are Negative Regulators of Snf1-Related Protein Kinase1 Signaling in Arabidopsis.
A. Rodrigues, M. Adamo, P. Crozet, L. Margalha, A. Confraria, C. Martinho, A. Elias, A. Rabissi, V. Lumbreras, M. Gonzalez-Guzman, et al. (2013)
PLANT CELL 25, 3871-3884
   Abstract »    Full Text »    PDF »
Difference in Abscisic Acid Perception Mechanisms between Closure Induction and Opening Inhibition of Stomata.
Y. Yin, Y. Adachi, W. Ye, M. Hayashi, Y. Nakamura, T. Kinoshita, I. C. Mori, and Y. Murata (2013)
Plant Physiology 163, 600-610
   Abstract »    Full Text »    PDF »
PYR/PYL/RCAR Abscisic Acid Receptors Regulate K+ and Cl- Channels through Reactive Oxygen Species-Mediated Activation of Ca2+ Channels at the Plasma Membrane of Intact Arabidopsis Guard Cells.
Y. Wang, Z.-H. Chen, B. Zhang, A. Hills, and M. R. Blatt (2013)
Plant Physiology 163, 566-577
   Abstract »    Full Text »    PDF »
Calcium-Dependent and -Independent Stomatal Signaling Network and Compensatory Feedback Control of Stomatal Opening via Ca2+ Sensitivity Priming.
K. Laanemets, B. Brandt, J. Li, E. Merilo, Y.-F. Wang, M. M. Keshwani, S. S. Taylor, H. Kollist, and J. I. Schroeder (2013)
Plant Physiology 163, 504-513
   Full Text »    PDF »
Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells?.
S. Aliniaeifard and U. van Meeteren (2013)
J. Exp. Bot. 64, 3551-3566
   Abstract »    Full Text »    PDF »
The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance.
G. A. Pizzio, L. Rodriguez, R. Antoni, M. Gonzalez-Guzman, C. Yunta, E. Merilo, H. Kollist, A. Albert, and P. L. Rodriguez (2013)
Plant Physiology 163, 441-455
   Abstract »    Full Text »    PDF »
Pathogen and Circadian Controlled 1 (PCC1) regulates polar lipid content, ABA-related responses, and pathogen defence in Arabidopsis thaliana.
R. Mir, M. L. Hernandez, E. Abou-Mansour, J. M. Martinez-Rivas, F. Mauch, J.-P. Metraux, and J. Leon (2013)
J. Exp. Bot. 64, 3385-3395
   Abstract »    Full Text »    PDF »
A Genomic-Scale Artificial MicroRNA Library as a Tool to Investigate the Functionally Redundant Gene Space in Arabidopsis.
F. Hauser, W. Chen, U. Deinlein, K. Chang, S. Ossowski, J. Fitz, G. J. Hannon, and J. I. Schroeder (2013)
PLANT CELL 25, 2848-2863
   Abstract »    Full Text »    PDF »
Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance.
M. Okamoto, F. C. Peterson, A. Defries, S.-Y. Park, A. Endo, E. Nambara, B. F. Volkman, and S. R. Cutler (2013)
PNAS 110, 12132-12137
   Abstract »    Full Text »    PDF »
Enzyme Action in the Regulation of Plant Hormone Responses.
C. S. Westfall, A. M. Muehler, and J. M. Jez (2013)
J. Biol. Chem. 288, 19304-19311
   Abstract »    Full Text »    PDF »
Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action.
P. Wang, L. Xue, G. Batelli, S. Lee, Y.-J. Hou, M. J. Van Oosten, H. Zhang, W. A. Tao, and J.-K. Zhu (2013)
PNAS 110, 11205-11210
   Abstract »    Full Text »    PDF »
Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin-proteasome system.
W. J. Lyzenga, H. Liu, A. Schofield, A. Muise-Hennessey, and S. L. Stone (2013)
J. Exp. Bot. 64, 2779-2791
   Abstract »    Full Text »    PDF »
Interplay between Sucrose and Folate Modulates Auxin Signaling in Arabidopsis.
M. E. Stokes, A. Chattopadhyay, O. Wilkins, E. Nambara, and M. M. Campbell (2013)
Plant Physiology 162, 1552-1565
   Abstract »    Full Text »    PDF »
PYR/RCAR Receptors Contribute to Ozone-, Reduced Air Humidity-, Darkness-, and CO2-Induced Stomatal Regulation.
E. Merilo, K. Laanemets, H. Hu, S. Xue, L. Jakobson, I. Tulva, M. Gonzalez-Guzman, P. L. Rodriguez, J. I. Schroeder, M. Brosche, et al. (2013)
Plant Physiology 162, 1652-1668
   Abstract »    Full Text »    PDF »
bHLH Transcription Factors That Facilitate K+ Uptake During Stomatal Opening Are Repressed by Abscisic Acid Through Phosphorylation.
Y. Takahashi, Y. Ebisu, T. Kinoshita, M. Doi, E. Okuma, Y. Murata, and K.-i. Shimazaki (2013)
Science Signaling 6, ra48
   Abstract »    Full Text »    PDF »
A Spatio-Temporal Understanding of Growth Regulation during the Salt Stress Response in Arabidopsis.
Y. Geng, R. Wu, C. W. Wee, F. Xie, X. Wei, P. M. Y. Chan, C. Tham, L. Duan, and J. R. Dinneny (2013)
PLANT CELL 25, 2132-2154
   Abstract »    Full Text »    PDF »
Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3.
F. Demir, C. Horntrich, J. O. Blachutzik, S. Scherzer, Y. Reinders, S. Kierszniowska, W. X. Schulze, G. S. Harms, R. Hedrich, D. Geiger, et al. (2013)
PNAS 110, 8296-8301
   Abstract »    Full Text »    PDF »
Genetics and Phosphoproteomics Reveal a Protein Phosphorylation Network in the Abscisic Acid Signaling Pathway in Arabidopsis thaliana.
T. Umezawa, N. Sugiyama, F. Takahashi, J. C. Anderson, Y. Ishihama, S. C. Peck, and K. Shinozaki (2013)
Science Signaling 6, rs8
   Abstract »    Full Text »    PDF »
HONSU, a Protein Phosphatase 2C, Regulates Seed Dormancy by Inhibiting ABA Signaling in Arabidopsis.
W. Kim, Y. Lee, J. Park, N. Lee, and G. Choi (2013)
Plant Cell Physiol. 54, 555-572
   Abstract »    Full Text »    PDF »
ABA Signaling in Guard Cells Entails a Dynamic Protein-Protein Interaction Relay from the PYL-RCAR Family Receptors to Ion Channels.
S. C. Lee, C. W. Lim, W. Lan, K. He, and S. Luan (2013)
Mol Plant 6, 528-538
   Abstract »    Full Text »    PDF »
The PP6 Phosphatase Regulates ABI5 Phosphorylation and Abscisic Acid Signaling in Arabidopsis.
M. Dai, Q. Xue, T. Mccray, K. Margavage, F. Chen, J.-H. Lee, C. D. Nezames, L. Guo, W. Terzaghi, J. Wan, et al. (2013)
PLANT CELL 25, 517-534
   Abstract »    Full Text »    PDF »
Nitrated Cyclic GMP Modulates Guard Cell Signaling in Arabidopsis.
T. Joudoi, Y. Shichiri, N. Kamizono, T. Akaike, T. Sawa, J. Yoshitake, N. Yamada, and S. Iwai (2013)
PLANT CELL 25, 558-571
   Abstract »    Full Text »    PDF »
PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root.
R. Antoni, M. Gonzalez-Guzman, L. Rodriguez, M. Peirats-Llobet, G. A. Pizzio, M. A. Fernandez, N. De Winne, G. De Jaeger, D. Dietrich, M. J. Bennett, et al. (2013)
Plant Physiology 161, 931-941
   Abstract »    Full Text »    PDF »
Selective Mimics of Strigolactone Actions and Their Potential Use for Controlling Damage Caused by Root Parasitic Weeds.
K. Fukui, S. Ito, and T. Asami (2013)
Mol Plant 6, 88-99
   Abstract »    Full Text »    PDF »
Endodermal ABA Signaling Promotes Lateral Root Quiescence during Salt Stress in Arabidopsis Seedlings.
L. Duan, D. Dietrich, C. H. Ng, P. M. Y. Chan, R. Bhalerao, M. J. Bennett, and J. R. Dinneny (2013)
PLANT CELL 25, 324-341
   Abstract »    Full Text »    PDF »
Natural Variation in Small Molecule-Induced TIR-NB-LRR Signaling Induces Root Growth Arrest via EDS1- and PAD4-Complexed R Protein VICTR in Arabidopsis.
T.-H. Kim, H.-H. Kunz, S. Bhattacharjee, F. Hauser, J. Park, C. Engineer, A. Liu, T. Ha, J. E. Parker, W. Gassmann, et al. (2012)
PLANT CELL 24, 5177-5192
   Abstract »    Full Text »    PDF »
Disruption of Abscisic Acid Signaling Constitutively Activates Arabidopsis Resistance to the Necrotrophic Fungus Plectosphaerella cucumerina.
A. Sanchez-Vallet, G. Lopez, B. Ramos, M. Delgado-Cerezo, M.-P. Riviere, F. Llorente, P. V. Fernandez, E. Miedes, J. M. Estevez, M. Grant, et al. (2012)
Plant Physiology 160, 2109-2124
   Abstract »    Full Text »    PDF »
Discovery of New Modules in Metabolic Biology Using ChemoMetabolomics.
S. Bocobza, L. Willmitzer, N. V. Raikhel, and A. Aharoni (2012)
Plant Physiology 160, 1160-1163
   Full Text »    PDF »
Ion Channels in Plants.
R. Hedrich (2012)
Physiol Rev 92, 1777-1811
   Abstract »    Full Text »    PDF »
FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase.
F. Yu, L. Qian, C. Nibau, Q. Duan, D. Kita, K. Levasseur, X. Li, C. Lu, H. Li, C. Hou, et al. (2012)
PNAS 109, 14693-14698
   Abstract »    Full Text »    PDF »
Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon.
G. Monke, M. Seifert, J. Keilwagen, M. Mohr, I. Grosse, U. Hahnel, A. Junker, B. Weisshaar, U. Conrad, H. Baumlein, et al. (2012)
Nucleic Acids Res. 40, 8240-8254
   Abstract »    Full Text »    PDF »
Isolation of Arabidopsis ahg11, a weak ABA hypersensitive mutant defective in nad4 RNA editing.
M. Murayama, S. Hayashi, N. Nishimura, M. Ishide, K. Kobayashi, Yusuke Yagi, T. Asami, T. Nakamura, K. Shinozaki, and T. Hirayama (2012)
J. Exp. Bot. 63, 5301-5310
   Abstract »    Full Text »    PDF »
Unique Drought Resistance Functions of the Highly ABA-Induced Clade A Protein Phosphatase 2Cs.
G. B. Bhaskara, T. T. Nguyen, and P. E. Verslues (2012)
Plant Physiology 160, 379-395
   Abstract »    Full Text »    PDF »
The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration.
P. Romero, M. T. Lafuente, and M. J. Rodrigo (2012)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Identification and expression analysis of the Glycine max CYP707A gene family in response to drought and salt stresses.
Y. Zheng, Y. Huang, W. Xian, J. Wang, and H. Liao (2012)
Ann. Bot. 110, 743-756
   Abstract »    Full Text »    PDF »
The lysine-rich motif of intrinsically disordered stress protein CDeT11-24 from Craterostigma plantagineum is responsible for phosphatidic acid binding and protection of enzymes from damaging effects caused by desiccation.
J. Petersen, S. K. Eriksson, P. Harryson, S. Pierog, T. Colby, D. Bartels, and H. Rohrig (2012)
J. Exp. Bot. 63, 4919-4929
   Abstract »    Full Text »    PDF »
Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana.
Y. Zheng, K. S. Schumaker, and Y. Guo (2012)
PNAS 109, 12822-12827
   Abstract »    Full Text »    PDF »
Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action.
B. Brandt, D. E. Brodsky, S. Xue, J. Negi, K. Iba, J. Kangasjarvi, M. Ghassemian, A. B. Stephan, H. Hu, and J. I. Schroeder (2012)
PNAS 109, 10593-10598
   Abstract »    Full Text »    PDF »
Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor.
Y. Kanno, A. Hanada, Y. Chiba, T. Ichikawa, M. Nakazawa, M. Matsui, T. Koshiba, Y. Kamiya, and M. Seo (2012)
PNAS 109, 9653-9658
   Abstract »    Full Text »    PDF »
Diversity in Genetic In Vivo Methods for Protein-Protein Interaction Studies: from the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System.
B. Stynen, H. Tournu, J. Tavernier, and P. Van Dijck (2012)
Microbiol. Mol. Biol. Rev. 76, 331-382
   Abstract »    Full Text »    PDF »
Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora.
P. Marraccini, F. Vinecky, G. S. C. Alves, H. J. O. Ramos, S. Elbelt, N. G. Vieira, F. A. Carneiro, P. S. Sujii, J. C. Alekcevetch, V. A. Silva, et al. (2012)
J. Exp. Bot. 63, 4191-4212
   Abstract »    Full Text »    PDF »
Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches.
A. Marshall, R. B. Aalen, D. Audenaert, T. Beeckman, M. R. Broadley, M. A. Butenko, A. I. Cano-Delgado, S. de Vries, T. Dresselhaus, G. Felix, et al. (2012)
PLANT CELL 24, 2262-2278
   Abstract »    Full Text »    PDF »
Arabidopsis PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid.
M. Gonzalez-Guzman, G. A. Pizzio, R. Antoni, F. Vera-Sirera, E. Merilo, G. W. Bassel, M. A. Fernandez, M. J. Holdsworth, M. A. Perez-Amador, H. Kollist, et al. (2012)
PLANT CELL 24, 2483-2496
   Abstract »    Full Text »    PDF »
A Plasma Membrane Receptor Kinase, GHR1, Mediates Abscisic Acid- and Hydrogen Peroxide-Regulated Stomatal Movement in Arabidopsis.
D. Hua, C. Wang, J. He, H. Liao, Y. Duan, Z. Zhu, Y. Guo, Z. Chen, and Z. Gong (2012)
PLANT CELL 24, 2546-2561
   Abstract »    Full Text »    PDF »
From Bench to Bountiful Harvests: A Road Map for the Next Decade of Arabidopsis Research.
I. Lavagi, M. Estelle, W. Weckwerth, J. Beynon, and R. M. Bastow (2012)
PLANT CELL 24, 2240-2247
   Abstract »    Full Text »    PDF »
A Vacuolar {beta}-Glucosidase Homolog That Possesses Glucose-Conjugated Abscisic Acid Hydrolyzing Activity Plays an Important Role in Osmotic Stress Responses in Arabidopsis.
Z.-Y. Xu, K. H. Lee, T. Dong, J. C. Jeong, J. B. Jin, Y. Kanno, D. H. Kim, S. Y. Kim, M. Seo, R. A. Bressan, et al. (2012)
PLANT CELL 24, 2184-2199
   Abstract »    Full Text »    PDF »
The ARP2/3 Complex Mediates Guard Cell Actin Reorganization and Stomatal Movement in Arabidopsis.
K. Jiang, K. Sorefan, M. J. Deeks, M. W. Bevan, P. J. Hussey, and A. M. Hetherington (2012)
PLANT CELL 24, 2031-2040
   Abstract »    Full Text »    PDF »
Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant.
P. Romero, M. J. Rodrigo, F. Alferez, A.-R. Ballester, L. Gonzalez-Candelas, L. Zacarias, and M. T. Lafuente (2012)
J. Exp. Bot. 63, 2753-2767
   Abstract »    Full Text »    PDF »
Reactive Oxygen Species Are Involved in Gibberellin/Abscisic Acid Signaling in Barley Aleurone Cells.
Y. Ishibashi, T. Tawaratsumida, K. Kondo, S. Kasa, M. Sakamoto, N. Aoki, S.-H. Zheng, T. Yuasa, and M. Iwaya-Inoue (2012)
Plant Physiology 158, 1705-1714
   Abstract »    Full Text »    PDF »
Constitutive Activation of Transcription Factor OsbZIP46 Improves Drought Tolerance in Rice.
N. Tang, H. Zhang, X. Li, J. Xiao, and L. Xiong (2012)
Plant Physiology 158, 1755-1768
   Abstract »    Full Text »    PDF »
Connections between Sphingosine Kinase and Phospholipase D in the Abscisic Acid Signaling Pathway in Arabidopsis.
L. Guo, G. Mishra, J. E. Markham, M. Li, A. Tawfall, R. Welti, and X. Wang (2012)
J. Biol. Chem. 287, 8286-8296
   Abstract »    Full Text »    PDF »
Pyrabactin, an ABA agonist, induced stomatal closure and changes in signalling components of guard cells in abaxial epidermis of Pisum sativum.
M. R. Puli and A. S. Raghavendra (2012)
J. Exp. Bot. 63, 1349-1356
   Abstract »    Full Text »    PDF »
FIA functions as an early signal component of abscisic acid signal cascade in Vicia faba guard cells.
Y. Sugiyama, M. Uraji, M. Watanabe-Sugimoto, E. Okuma, S. Munemasa, Y. Shimoishi, Y. Nakamura, I. C. Mori, S. Iwai, and Y. Murata (2012)
J. Exp. Bot. 63, 1357-1365
   Abstract »    Full Text »    PDF »
Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis.
Y.-H. Xu, R. Liu, L. Yan, Z.-Q. Liu, S.-C. Jiang, Y.-Y. Shen, X.-F. Wang, and D.-P. Zhang (2012)
J. Exp. Bot. 63, 1095-1106
   Abstract »    Full Text »    PDF »
New Technologies for 21st Century Plant Science.
D. W. Ehrhardt and W. B. Frommer (2012)
PLANT CELL 24, 374-394
   Abstract »    Full Text »    PDF »
Seasonal Abscisic Acid Signal and a Basic Leucine Zipper Transcription Factor, DkbZIP5, Regulate Proanthocyanidin Biosynthesis in Persimmon Fruit.
T. Akagi, A. Katayama-Ikegami, S. Kobayashi, A. Sato, A. Kono, and K. Yonemori (2012)
Plant Physiology 158, 1089-1102
   Abstract »    Full Text »    PDF »
Controlling Hormone Action by Subversion and Deception.
J. Leung (2012)
Science 335, 46-47
   Abstract »    Full Text »    PDF »
Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases.
F.-F. Soon, L.-M. Ng, X. E. Zhou, G. M. West, A. Kovach, M. H. E. Tan, K. M. Suino-Powell, Y. He, Y. Xu, M. J. Chalmers, et al. (2012)
Science 335, 85-88
   Abstract »    Full Text »    PDF »
Molecular Mechanism for Inhibition of a Critical Component in the Arabidopsis thaliana Abscisic Acid Signal Transduction Pathways, SnRK2.6, by Protein Phosphatase ABI1.
T. Xie, R. Ren, Y.-y. Zhang, Y. Pang, C. Yan, X. Gong, Y. He, W. Li, D. Miao, Q. Hao, et al. (2012)
J. Biol. Chem. 287, 794-802
   Abstract »    Full Text »    PDF »
Of Blades and Branches: Understanding and Expanding the Arabidopsis Ad/Abaxial Regulatory Network through Target Gene Identification.
T. Liu, B. J. Reinhart, E. Magnani, T. Huang, R. Kerstetter, and M. K. Barton (2012)
Cold Spring Harb Symp Quant Biol 77, 31-45
   Abstract »    Full Text »    PDF »
A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth.
H. Kim, H. Hwang, J.-W. Hong, Y.-N. Lee, I. P. Ahn, I. S. Yoon, S.-D. Yoo, S. Lee, S. C. Lee, and B.-G. Kim (2012)
J. Exp. Bot. 63, 1013-1024
   Abstract »    Full Text »    PDF »
Isolation and Characterization of Novel Mutant Loci Suppressing the ABA Hypersensitivity of the Arabidopsis coronatine insensitive 1-16 (coi1-16) Mutant During Germination and Seedling Growth.
A. Fernandez-Arbaizar, J. J. Regalado, and O. Lorenzo (2012)
Plant Cell Physiol. 53, 53-63
   Abstract »    Full Text »    PDF »
Molecular and Physiological Characterization of the Arabidopsis thaliana Oxidation-Related Zinc Finger 2, a Plasma Membrane Protein Involved in ABA and Salt Stress Response Through the ABI2-Mediated Signaling Pathway.
P. Huang, H.-W. Ju, J.-H. Min, X. Zhang, J.-S. Chung, H.-S. Cheong, and C. S. Kim (2012)
Plant Cell Physiol. 53, 193-203
   Abstract »    Full Text »    PDF »
Suppression of 9-cis-Epoxycarotenoid Dioxygenase, Which Encodes a Key Enzyme in Abscisic Acid Biosynthesis, Alters Fruit Texture in Transgenic Tomato.
L. Sun, Y. Sun, M. Zhang, L. Wang, J. Ren, M. Cui, Y. Wang, K. Ji, P. Li, Q. Li, et al. (2012)
Plant Physiology 158, 283-298
   Abstract »    Full Text »    PDF »
Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases.
L.-M. Ng, F.-F. Soon, X. E. Zhou, G. M. West, A. Kovach, K. M. Suino-Powell, M. J. Chalmers, J. Li, E.-L. Yong, J.-K. Zhu, et al. (2011)
PNAS 108, 21259-21264
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882