Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 324 (5931): 1199-1202

Copyright © 2009 by the American Association for the Advancement of Science

Synthetic Gene Networks That Count

Ari E. Friedland,1,* Timothy K. Lu,1,2,* Xiao Wang,1 David Shi,1 George Church,2,3 James J. Collins1,{dagger}

Abstract: Synthetic gene networks can be constructed to emulate digital circuits and devices, giving one the ability to program and design cells with some of the principles of modern computing, such as counting. A cellular counter would enable complex synthetic programming and a variety of biotechnology applications. Here, we report two complementary synthetic genetic counters in Escherichia coli that can count up to three induction events: the first, a riboregulated transcriptional cascade, and the second, a recombinase-based cascade of memory units. These modular devices permit counting of varied user-defined inputs over a range of frequencies and can be expanded to count higher numbers.

1 Howard Hughes Medical Institute, Department of Biomedical Engineering, Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA.
2 Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Room E25-519, Cambridge, MA 02139, USA.
3 Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: jcollins{at}bu.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Synthetic conversion of a graded receptor signal into a tunable, reversible switch.
S. Palani and C. A. Sarkar (2014)
Mol Syst Biol 7, 480
   Abstract »    Full Text »    PDF »
Sequestration-based bistability enables tuning of the switching boundaries and design of a latch.
D. Chen and A. P. Arkin (2014)
Mol Syst Biol 8, 620
   Abstract »    Full Text »    PDF »
Programmable bacteria detect and record an environmental signal in the mammalian gut.
J. W. Kotula, S. J. Kerns, L. A. Shaket, L. Siraj, J. J. Collins, J. C. Way, and P. A. Silver (2014)
PNAS 111, 4838-4843
   Abstract »    Full Text »    PDF »
High-Yield, Zero-Leakage Expression System with a Translational Switch Using Site-Specific Unnatural Amino Acid Incorporation.
M. Minaba and Y. Kato (2014)
Appl. Envir. Microbiol. 80, 1718-1725
   Abstract »    Full Text »    PDF »
Building-in biosafety for synthetic biology.
O. Wright, G.-B. Stan, and T. Ellis (2013)
Microbiology 159, 1221-1235
   Abstract »    Full Text »    PDF »
Recombinatorial Logic.
Y. Benenson (2013)
Science 340, 554-555
   Abstract »    Full Text »    PDF »
Amplifying Genetic Logic Gates.
J. Bonnet, P. Yin, M. E. Ortiz, P. Subsoontorn, and D. Endy (2013)
Science 340, 599-603
   Abstract »    Full Text »    PDF »
An engineered small RNA-mediated genetic switch based on a ribozyme expression platform.
B. Klauser and J. S. Hartig (2013)
Nucleic Acids Res. 41, 5542-5552
   Abstract »    Full Text »    PDF »
Cell-Based Therapeutics: The Next Pillar of Medicine.
M. A. Fischbach, J. A. Bluestone, and W. A. Lim (2013)
Science Translational Medicine 5, 179ps7
   Full Text »    PDF »
Bottom-up construction of in vitro switchable memories.
A. Padirac, T. Fujii, and Y. Rondelez (2012)
PNAS 109, E3212-E3220
   Abstract »    Full Text »    PDF »
Engineering robust control of two-component system phosphotransfer using modular scaffolds.
W. R. Whitaker, S. A. Davis, A. P. Arkin, and J. E. Dueber (2012)
PNAS 109, 18090-18095
   Abstract »    Full Text »    PDF »
Regulating synthetic gene networks in 3D materials.
T. L. Deans, A. Singh, M. Gibson, and J. H. Elisseeff (2012)
PNAS 109, 15217-15222
   Abstract »    Full Text »    PDF »
The Emerging Paradigm of Network Medicine in the Study of Human Disease.
S. Y. Chan and J. Loscalzo (2012)
Circ. Res. 111, 359-374
   Abstract »    Full Text »    PDF »
Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals.
L. Qi, J. B. Lucks, C. C. Liu, V. K. Mutalik, and A. P. Arkin (2012)
Nucleic Acids Res. 40, 5775-5786
   Abstract »    Full Text »    PDF »
Rewritable digital data storage in live cells via engineered control of recombination directionality.
J. Bonnet, P. Subsoontorn, and D. Endy (2012)
PNAS 109, 8884-8889
   Abstract »    Full Text »    PDF »
Expression optimization and synthetic gene networks in cell-free systems.
D. K. Karig, S. Iyer, M. L. Simpson, and M. J. Doktycz (2012)
Nucleic Acids Res. 40, 3763-3774
   Abstract »    Full Text »    PDF »
Computational design of synthetic regulatory networks from a genetic library to characterize the designability of dynamical behaviors.
G. Rodrigo, J. Carrera, and A. Jaramillo (2011)
Nucleic Acids Res. 39, e138
   Abstract »    Full Text »    PDF »
Robust synthetic gene network design via library-based search method.
C.-H. Wu, H.-C. Lee, and B.-S. Chen (2011)
Bioinformatics 27, 2700-2706
   Abstract »    Full Text »    PDF »
Synthetic Biology Moving into the Clinic.
W. C. Ruder, T. Lu, and J. J. Collins (2011)
Science 333, 1248-1252
   Abstract »    Full Text »    PDF »
Multi-Input RNAi-Based Logic Circuit for Identification of Specific Cancer Cells.
Z. Xie, L. Wroblewska, L. Prochazka, R. Weiss, and Y. Benenson (2011)
Science 333, 1307-1311
   Abstract »    Full Text »    PDF »
Versatile RNA-sensing transcriptional regulators for engineering genetic networks.
J. B. Lucks, L. Qi, V. K. Mutalik, D. Wang, and A. P. Arkin (2011)
PNAS 108, 8617-8622
   Abstract »    Full Text »    PDF »
A nucleoside kinase as a dual selector for genetic switches and circuits.
Y. Tashiro, H. Fukutomi, K. Terakubo, K. Saito, and D. Umeno (2011)
Nucleic Acids Res. 39, e12
   Abstract »    Full Text »    PDF »
A New Approach to an Old Problem: Synthetic Biology Tools for Human Disease and Metabolism.
D. R. Burrill, P. M. Boyle, and P. A. Silver (2011)
Cold Spring Harb Symp Quant Biol 76, 145-154
   Abstract »    Full Text »    PDF »
Tracking, tuning, and terminating microbial physiology using synthetic riboregulators.
J. M. Callura, D. J. Dwyer, F. J. Isaacs, C. R. Cantor, and J. J. Collins (2010)
PNAS 107, 15898-15903
   Abstract »    Full Text »    PDF »
Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery.
T. Korcsmaros, I. J. Farkas, M. S. Szalay, P. Rovo, D. Fazekas, Z. Spiro, C. Bode, K. Lenti, T. Vellai, and P. Csermely (2010)
Bioinformatics 26, 2042-2050
   Abstract »    Full Text »    PDF »
Tuning and controlling gene expression noise in synthetic gene networks.
K. F. Murphy, R. M. Adams, X. Wang, G. Balazsi, and J. J. Collins (2010)
Nucleic Acids Res. 38, 2712-2726
   Abstract »    Full Text »    PDF »
The challenges of informatics in synthetic biology: from biomolecular networks to artificial organisms.
G. Alterovitz, T. Muso, and M. F. Ramoni (2010)
Brief Bioinform 11, 80-95
   Abstract »    Full Text »    PDF »
New Connections, New Components, Real Dynamics.
J. S. Bader (2009)
Science Signaling 2, pe48
   Abstract »    Full Text »    PDF »
It's the DNA That Counts.
C. D. Smolke (2009)
Science 324, 1156-1157
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882