Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 324 (5932): 1323-1327

Copyright © 2009 by the American Association for the Advancement of Science

McsB Is a Protein Arginine Kinase That Phosphorylates and Inhibits the Heat-Shock Regulator CtsR

Jakob Fuhrmann,1,* Andreas Schmidt,2,* Silvia Spiess,3 Anita Lehner,1 Kürsad Turgay,4 Karl Mechtler,1,5 Emmanuelle Charpentier,3,6 Tim Clausen1,{dagger}

Abstract: All living organisms face a variety of environmental stresses that cause the misfolding and aggregation of proteins. To eliminate damaged proteins, cells developed highly efficient stress response and protein quality control systems. We performed a biochemical and structural analysis of the bacterial CtsR/McsB stress response. The crystal structure of the CtsR repressor, in complex with DNA, pinpointed key residues important for high-affinity binding to the promoter regions of heat-shock genes. Moreover, biochemical characterization of McsB revealed that McsB specifically phosphorylates arginine residues in the DNA binding domain of CtsR, thereby impairing its function as a repressor of stress response genes. Identification of the CtsR/McsB arginine phospho-switch expands the repertoire of possible protein modifications involved in prokaryotic and eukaryotic transcriptional regulation.

1 Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria.
2 Christian Doppler Laboratory for Proteome Analysis, University of Vienna, Dr. Bohrgasse 3, A-1030 Vienna, Austria.
3 Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria.
4 Institute for Biology–Microbiology, Freie Universität Berlin, Königin-Luisé-Str. 12-16, 14195 Berlin, Germany.
5 Institute for Molecular Biotechnology–IMBA, Dr. Bohrgasse 3, A-1030 Vienna, Austria.
6 The Laboratory for Molecular Infection Medicine Sweden, Umeå University, S-90187 Umeå, Sweden.

* These authors contributed equally to the work.

{dagger} To whom correspondence should be addressed. E-mail: clausen{at}imp.univie.ac.at


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Microbial Protein-tyrosine Kinases.
J. D. Chao, D. Wong, and Y. Av-Gay (2014)
J. Biol. Chem. 289, 9463-9472
   Abstract »    Full Text »    PDF »
Quantitative Phosphoproteomics Reveals the Role of Protein Arginine Phosphorylation in the Bacterial Stress Response.
A. Schmidt, D. B. Trentini, S. Spiess, J. Fuhrmann, G. Ammerer, K. Mechtler, and T. Clausen (2014)
Mol. Cell. Proteomics 13, 537-550
   Abstract »    Full Text »    PDF »
Bacterial tyrosine kinases: evolution, biological function and structural insights.
C. Grangeasse, S. Nessler, and I. Mijakovic (2012)
Phil Trans R Soc B 367, 2640-2655
   Abstract »    Full Text »    PDF »
Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance.
F. Sun, Y. Ding, Q. Ji, Z. Liang, X. Deng, C. C. L. Wong, C. Yi, L. Zhang, S. Xie, S. Alvarez, et al. (2012)
PNAS 109, 15461-15466
   Abstract »    Full Text »    PDF »
Unveiling the Novel Dual Specificity Protein Kinases in Bacillus anthracis: IDENTIFICATION OF THE FIRST PROKARYOTIC DUAL SPECIFICITY TYROSINE PHOSPHORYLATION-REGULATED KINASE (DYRK)-LIKE KINASE.
G. Arora, A. Sajid, M. D. Arulanandh, A. Singhal, A. R. Mattoo, A. P. Pomerantsev, S. H. Leppla, S. Maiti, and Y. Singh (2012)
J. Biol. Chem. 287, 26749-26763
   Abstract »    Full Text »    PDF »
Identification and Characterization of a Putative Arginine Kinase Homolog from Myxococcus xanthus Required for Fruiting Body Formation and Cell Differentiation.
J. Bragg, A. Rajkovic, C. Anderson, R. Curtis, J. Van Houten, B. Begres, C. Naples, M. Snider, D. Fraga, and M. Singer (2012)
J. Bacteriol. 194, 2668-2676
   Abstract »    Full Text »    PDF »
Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis.
A. K. W. Elsholz, K. Turgay, S. Michalik, B. Hessling, K. Gronau, D. Oertel, U. Mader, J. Bernhardt, D. Becher, M. Hecker, et al. (2012)
PNAS 109, 7451-7456
   Abstract »    Full Text »    PDF »
An Antibiotic That Inhibits a Late Step in Wall Teichoic Acid Biosynthesis Induces the Cell Wall Stress Stimulon in Staphylococcus aureus.
J. Campbell, A. K. Singh, J. G. Swoboda, M. S. Gilmore, B. J. Wilkinson, and S. Walker (2012)
Antimicrob. Agents Chemother. 56, 1810-1820
   Abstract »    Full Text »    PDF »
CtsR Regulation in mcsAB-Deficient Gram-Positive Bacteria.
L. Tao, P. Chattoraj, and I. Biswas (2012)
J. Bacteriol. 194, 1361-1368
   Abstract »    Full Text »    PDF »
Genetic Analysis of Phage Mu Mor Protein Amino Acids Involved in DNA Minor Groove Binding and Conformational Changes.
M. Kumaraswami, L. Avanigadda, R. Rai, H.-W. Park, and M. M. Howe (2011)
J. Biol. Chem. 286, 35852-35862
   Abstract »    Full Text »    PDF »
Activity Control of the ClpC Adaptor McsB in Bacillus subtilis.
A. K. W. Elsholz, K. Hempel, S. Michalik, K. Gronau, D. Becher, M. Hecker, and U. Gerth (2011)
J. Bacteriol. 193, 3887-3893
   Abstract »    Full Text »    PDF »
Insight into Bacterial Phosphotransferase System-Mediated Signaling by Interspecies Transplantation of a Transcriptional Regulator.
T. Bahr, D. Luttmann, W. Marz, B. Rak, and B. Gorke (2011)
J. Bacteriol. 193, 2013-2026
   Abstract »    Full Text »    PDF »
CtsR, the Gram-positive master regulator of protein quality control, feels the heat.
A. K. W. Elsholz, S. Michalik, D. Zuhlke, M. Hecker, and U. Gerth (2010)
EMBO J. 29, 3621-3629
   Abstract »    Full Text »    PDF »
A New Mechanism of Phosphoregulation in Signal Transduction Pathways.
K. Jung and H. Jung (2009)
Science Signaling 2, pe71
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882