Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 324 (5934): 1565-1568

Copyright © 2009 by the American Association for the Advancement of Science

Structure and Mechanism of an Amino Acid Antiporter

Xiang Gao,1,2,* Feiran Lu,1,2,* Lijun Zhou,1,2,* Shangyu Dang,1,2 Linfeng Sun,1,2 Xiaochun Li,1,2 Jiawei Wang,1,2 Yigong Shi2,3,{dagger}

Abstract: Virulent enteric pathogens such as Escherichia coli strain O157:H7 rely on acid-resistance (AR) systems to survive the acidic environment in the stomach. A major component of AR is an arginine-dependent arginine:agmatine antiporter that expels intracellular protons. Here, we report the crystal structure of AdiC, the arginine:agmatine antiporter from E. coli O157:H7 and a member of the amino acid/polyamine/organocation (APC) superfamily of transporters at 3.6 Å resolution. The overall fold is similar to that of several Na+-coupled symporters. AdiC contains 12 transmembrane segments, forms a homodimer, and exists in an outward-facing, open conformation in the crystals. A conserved, acidic pocket opens to the periplasm. Structural and biochemical analysis reveals the essential ligand-binding residues, defines the transport route, and suggests a conserved mechanism for the antiporter activity.

1 State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China.
2 Center for Structural Biology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.
3 School of Medicine, Tsinghua University, Beijing 100084, China.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: shi-lab{at}

Molecular Motions Involved in Na-K-Cl Cotransporter-mediated Ion Transport and Transporter Activation Revealed by Internal Cross-linking between Transmembrane Domains 10 and 11/12.
M. Y. Monette, S. Somasekharan, and B. Forbush (2014)
J. Biol. Chem. 289, 7569-7579
   Abstract »    Full Text »    PDF »
Converting the Yeast Arginine Can1 Permease to a Lysine Permease.
K. Ghaddar, E.-M. Krammer, N. Mihajlovic, S. Brohee, B. Andre, and M. Prevost (2014)
J. Biol. Chem. 289, 7232-7246
   Abstract »    Full Text »    PDF »
How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.
A. Penmatsa and E. Gouaux (2014)
J. Physiol. 592, 863-869
   Abstract »    Full Text »    PDF »
The {gamma}-Aminobutyrate Permease GabP Serves as the Third Proline Transporter of Bacillus subtilis.
A. Zaprasis, T. Hoffmann, L. Stannek, K. Gunka, F. M. Commichau, and E. Bremer (2014)
J. Bacteriol. 196, 515-526
   Abstract »    Full Text »    PDF »
The Two Na+ Sites in the Human Serotonin Transporter Play Distinct Roles in the Ion Coupling and Electrogenicity of Transport.
B. Felts, A. B. Pramod, W. Sandtner, N. Burbach, S. Bulling, H. H. Sitte, and L. K. Henry (2014)
J. Biol. Chem. 289, 1825-1840
   Abstract »    Full Text »    PDF »
A L-Lysine Transporter of High Stereoselectivity of the Amino Acid-Polyamine-Organocation (APC) Superfamily: PRODUCTION, FUNCTIONAL CHARACTERIZATION, AND STRUCTURE MODELING.
J. Kaur, E. Olkhova, V. N. Malviya, E. Grell, and H. Michel (2014)
J. Biol. Chem. 289, 1377-1387
   Abstract »    Full Text »    PDF »
Characterization and Molecular Mechanism of AroP as an Aromatic Amino Acid and Histidine Transporter in Corynebacterium glutamicum.
X. Shang, Y. Zhang, G. Zhang, X. Chai, A. Deng, Y. Liang, and T. Wen (2013)
J. Bacteriol. 195, 5334-5342
   Abstract »    Full Text »    PDF »
Substrate Selectivity of the Acid-activated Glutamate/{gamma}-Aminobutyric acid (GABA) Antiporter GadC from Escherichia coli.
D. Ma, P. Lu, and Y. Shi (2013)
J. Biol. Chem. 288, 15148-15153
   Abstract »    Full Text »    PDF »
Chloride binding site of neurotransmitter sodium symporters.
A. K. Kantcheva, M. Quick, L. Shi, A.-M. L. Winther, S. Stolzenberg, H. Weinstein, J. A. Javitch, and P. Nissen (2013)
PNAS 110, 8489-8494
   Abstract »    Full Text »    PDF »
Structure-based ligand discovery for the Large-neutral Amino Acid Transporter 1, LAT-1.
E. G. Geier, A. Schlessinger, H. Fan, J. E. Gable, J. J. Irwin, A. Sali, and K. M. Giacomini (2013)
PNAS 110, 5480-5485
   Abstract »    Full Text »    PDF »
The SUD1 Gene Encodes a Putative E3 Ubiquitin Ligase and Is a Positive Regulator of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in Arabidopsis.
V. G. Doblas, V. Amorim-Silva, D. Pose, A. Rosado, A. Esteban, M. Arro, H. Azevedo, A. Bombarely, O. Borsani, V. Valpuesta, et al. (2013)
PLANT CELL 25, 728-743
   Abstract »    Full Text »    PDF »
Modeling, Substrate Docking, and Mutational Analysis Identify Residues Essential for the Function and Specificity of a Eukaryotic Purine-Cytosine NCS1 Transporter.
E. Krypotou, V. Kosti, S. Amillis, V. Myrianthopoulos, E. Mikros, and G. Diallinas (2012)
J. Biol. Chem. 287, 36792-36803
   Abstract »    Full Text »    PDF »
Simulated annealing reveals the kinetic activity of SGLT1, a member of the LeuT structural family.
J.-P. Longpre, L. J. Sasseville, and J.-Y. Lapointe (2012)
J. Gen. Physiol. 140, 361-374
   Abstract »    Full Text »    PDF »
Carrier Subunit of Plasma Membrane Transporter Is Required for Oxidative Folding of Its Helper Subunit.
M. Rius and J. Chillaron (2012)
J. Biol. Chem. 287, 18190-18200
   Abstract »    Full Text »    PDF »
Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis.
M. Fujita, Y. Fujita, S. Iuchi, K. Yamada, Y. Kobayashi, K. Urano, M. Kobayashi, K. Yamaguchi-Shinozaki, and K. Shinozaki (2012)
PNAS 109, 6343-6347
   Abstract »    Full Text »    PDF »
Membrane Topological Structure of Neutral System N/A Amino Acid Transporter 4 (SNAT4) Protein.
Q. Shi, R. Padmanabhan, C. J. Villegas, S. Gu, and J. X. Jiang (2011)
J. Biol. Chem. 286, 38086-38094
   Abstract »    Full Text »    PDF »
SLC6 Neurotransmitter Transporters: Structure, Function, and Regulation.
A. S. Kristensen, J. Andersen, T. N. Jorgensen, L. Sorensen, J. Eriksen, C. J. Loland, K. Stromgaard, and U. Gether (2011)
Pharmacol. Rev. 63, 585-640
   Abstract »    Full Text »    PDF »
Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes.
A. Sasahara, K. Nanatani, M. Enomoto, S. Kuwahara, and K. Abe (2011)
J. Biol. Chem. 286, 29044-29052
   Abstract »    Full Text »    PDF »
An Unusual Transmembrane Helix in the Endoplasmic Reticulum Ubiquitin Ligase Doa10 Modulates Degradation of Its Cognate E2 Enzyme.
S. G. Kreft and M. Hochstrasser (2011)
J. Biol. Chem. 286, 20163-20174
   Abstract »    Full Text »    PDF »
Protonation of Glutamate 208 Induces the Release of Agmatine in an Outward-facing Conformation of an Arginine/Agmatine Antiporter.
E. Zomot and I. Bahar (2011)
J. Biol. Chem. 286, 19693-19701
   Abstract »    Full Text »    PDF »
Transport activity-dependent intracellular sorting of the yeast general amino acid permease.
N. E. Cain and C. A. Kaiser (2011)
Mol. Biol. Cell 22, 1919-1929
   Abstract »    Full Text »    PDF »
Protein Kinase C-Mediated Phosphorylation of a Single Serine Residue on the Rat Glial Glutamine Transporter SN1 Governs Its Membrane Trafficking.
L. S. H. Nissen-Meyer, M. C. Popescu, E. H. Hamdani, and F. A. Chaudhry (2011)
J. Neurosci. 31, 6565-6575
   Abstract »    Full Text »    PDF »
Biology of Human Sodium Glucose Transporters.
E. M. Wright, D. D. F. Loo, and B. A. Hirayama (2011)
Physiol Rev 91, 733-794
   Abstract »    Full Text »    PDF »
Molecular basis of substrate-induced permeation by an amino acid antiporter.
L. Kowalczyk, M. Ratera, A. Paladino, P. Bartoccioni, E. Errasti-Murugarren, E. Valencia, G. Portella, S. Bial, A. Zorzano, I. Fita, et al. (2011)
PNAS 108, 3935-3940
   Abstract »    Full Text »    PDF »
A single residue in transmembrane domain 11 defines the different affinity for thiazides between the mammalian and flounder NaCl transporters.
M. Castaneda-Bueno, N. Vazquez, I. Bustos-Jaimes, D. Hernandez, E. Rodriguez-Lobato, D. Pacheco-Alvarez, R. Carino-Cortes, E. Moreno, N. A. Bobadilla, and G. Gamba (2010)
Am J Physiol Renal Physiol 299, F1111-F1119
   Abstract »    Full Text »    PDF »
Role of Transmembrane Domain 8 in Substrate Selectivity and Translocation of SteT, a Member of the L-Amino Acid Transporter (LAT) Family.
P. Bartoccioni, C. del Rio, M. Ratera, L. Kowalczyk, J. M. Baldwin, A. Zorzano, M. Quick, S. A. Baldwin, J. L. Vazquez-Ibar, and M. Palacin (2010)
J. Biol. Chem. 285, 28764-28776
   Abstract »    Full Text »    PDF »
Identification of a Receptor Subunit and Putative Ligand-Binding Residues Involved in the Bacillus megaterium QM B1551 Spore Germination Response to Glucose.
G. Christie, H. Gotzke, and C. R. Lowe (2010)
J. Bacteriol. 192, 4317-4326
   Abstract »    Full Text »    PDF »
Molecular Basis of Alternating Access Membrane Transport by the Sodium-Hydantoin Transporter Mhp1.
T. Shimamura, S. Weyand, O. Beckstein, N. G. Rutherford, J. M. Hadden, D. Sharples, M. S. P. Sansom, S. Iwata, P. J. F. Henderson, and A. D. Cameron (2010)
Science 328, 470-473
   Abstract »    Full Text »    PDF »
The Rocking Bundle: A Mechanism for Ion-Coupled Solute Flux by Symmetrical Transporters.
L. R. Forrest and G. Rudnick (2009)
Physiology 24, 377-386
   Abstract »    Full Text »    PDF »
Highlights From the Literature.
Physiology 24, 276-280
   Full Text »    PDF »
Mutation of Asparagine 76 in the Center of Glutamine Transporter SNAT3 Modulates Substrate-induced Conductances and Na+ Binding.
S. Broer, H.-P. Schneider, A. Broer, and J. W. Deitmer (2009)
J. Biol. Chem. 284, 25823-25831
   Abstract »    Full Text »    PDF »
A Conserved Na+ Binding Site of the Sodium-coupled Neutral Amino Acid Transporter 2 (SNAT2).
Z. Zhang, T. Albers, H. L. Fiumera, A. Gameiro, and C. Grewer (2009)
J. Biol. Chem. 284, 25314-25323
   Abstract »    Full Text »    PDF »
Structure and Mechanism of a Na+-Independent Amino Acid Transporter.
P. L. Shaffer, A. Goehring, A. Shankaranarayanan, and E. Gouaux (2009)
Science 325, 1010-1014
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882