Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 325 (5938): 332-336

Copyright © 2009 by the American Association for the Advancement of Science

RIP3, an Energy Metabolism Regulator That Switches TNF-Induced Cell Death from Apoptosis to Necrosis

Duan-Wu Zhang,1 Jing Shao,1 Juan Lin,1 Na Zhang,1 Bao-Ju Lu,2 Sheng-Cai Lin,1 Meng-Qiu Dong,2 Jiahuai Han1,*

Abstract: Necrosis can be induced by stimulating death receptors with tumor necrosis factor (TNF) or other agonists; however, the underlying mechanism differentiating necrosis from apoptosis is largely unknown. We identified the protein kinase receptor-interacting protein 3 (RIP3) as a molecular switch between TNF-induced apoptosis and necrosis in NIH 3T3 cells and found that RIP3 was required for necrosis in other cells. RIP3 did not affect RIP1-mediated apoptosis but was required for RIP1-mediated necrosis and the enhancement of necrosis by the caspase inhibitor zVAD. By activating key enzymes of metabolic pathways, RIP3 regulates TNF-induced reactive oxygen species production, which partially accounts for RIP3’s ability to promote necrosis. Our data suggest that modulation of energy metabolism in response to death stimuli has an important role in the choice between apoptosis and necrosis.

1 Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China.
2 National Institute of Biological Sciences, Beijing 102206, China.

* To whom correspondence should be addressed. E-mail: jhan{at}

Regulated Cell Death in AKI.
A. Linkermann, G. Chen, G. Dong, U. Kunzendorf, S. Krautwald, and Z. Dong (2014)
J. Am. Soc. Nephrol.
   Abstract »
MyD88 mediates the decision to die by apoptosis or necroptosis after UV irradiation.
E. Harberts, R. Fishelevich, J. Liu, S. P. Atamas, and A. A. Gaspari (2014)
Innate Immunity 20, 529-539
   Abstract »    Full Text »    PDF »
A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis.
J. Gautheron, M. Vucur, F. Reisinger, D. Vargas Cardenas, C. Roderburg, C. Koppe, K. Kreggenwinkel, A. T. Schneider, M. Bartneck, U. P. Neumann, et al. (2014)
EMBO Mol Med.
   Abstract »    Full Text »    PDF »
Cytosolic Double-Stranded DNA Induces Nonnecroptotic Programmed Cell Death in Trophoblasts via IFI16.
X. Chu, W. Chen, N. Li, X.-Z. Hu, C.-T. Du, S.-X. Yu, M. Zhou, X.-J. Zhang, G.-M. Jiang, W.-Y. Han, et al. (2014)
The Journal of Infectious Disease
   Abstract »    Full Text »    PDF »
Cathepsins Limit Macrophage Necroptosis through Cleavage of Rip1 Kinase.
S. McComb, B. Shutinoski, S. Thurston, E. Cessford, K. Kumar, and S. Sad (2014)
J. Immunol. 192, 5671-5678
   Abstract »    Full Text »    PDF »
Release of Interleukin-1{alpha} or Interleukin-1{beta} Depends on Mechanism of Cell Death.
H. England, H. R. Summersgill, M. E. Edye, N. J. Rothwell, and D. Brough (2014)
J. Biol. Chem. 289, 15942-15950
   Abstract »    Full Text »    PDF »
Co-inhibition of NF-{kappa}B and JNK is synergistic in TNF-expressing human AML.
A. Volk, J. Li, J. Xin, D. You, J. Zhang, X. Liu, Y. Xiao, P. Breslin, Z. Li, W. Wei, et al. (2014)
J. Exp. Med. 211, 1093-1108
   Abstract »    Full Text »    PDF »
Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death.
D. Weng, R. Marty-Roix, S. Ganesan, M. K. Proulx, G. I. Vladimer, W. J. Kaiser, E. S. Mocarski, K. Pouliot, F. K.-M. Chan, M. A. Kelliher, et al. (2014)
PNAS 111, 7391-7396
   Abstract »    Full Text »    PDF »
Die another way - non-apoptotic mechanisms of cell death.
S. W. G. Tait, G. Ichim, and D. R. Green (2014)
J. Cell Sci. 127, 2135-2144
   Abstract »    Full Text »    PDF »
cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner.
W. W.-L. Wong, J. E. Vince, N. Lalaoui, K. E. Lawlor, D. Chau, A. Bankovacki, H. Anderton, D. Metcalf, L. O'Reilly, P. J. Jost, et al. (2014)
Blood 123, 2562-2572
   Abstract »    Full Text »    PDF »
A novel Fizzy/Cdc20-dependent mechanism suppresses necrosis in neural stem cells.
C. Kuang, K. L. Golden, C. R. Simon, J. Damrath, L. Buttitta, C. E. Gamble, and C.-Y. Lee (2014)
Development 141, 1453-1464
   Abstract »    Full Text »    PDF »
AMP-activated Protein Kinase {alpha}2 Protects against Liver Injury from Metastasized Tumors via Reduced Glucose Deprivation-induced Oxidative Stress.
S.-L. Qiu, Z.-C. Xiao, C.-M. Piao, Y.-L. Xian, L.-X. Jia, Y.-F. Qi, J.-H. Han, Y.-y. Zhang, and J. Du (2014)
J. Biol. Chem. 289, 9449-9459
   Abstract »    Full Text »    PDF »
Activity of Protein Kinase RIPK3 Determines Whether Cells Die by Necroptosis or Apoptosis.
K. Newton, D. L. Dugger, K. E. Wickliffe, N. Kapoor, M. C. de Almagro, D. Vucic, L. Komuves, R. E. Ferrando, D. M. French, J. Webster, et al. (2014)
Science 343, 1357-1360
   Abstract »    Full Text »    PDF »
True Grit: Programmed Necrosis in Antiviral Host Defense, Inflammation, and Immunogenicity.
E. S. Mocarski, W. J. Kaiser, D. Livingston-Rosanoff, J. W. Upton, and L. P. Daley-Bauer (2014)
J. Immunol. 192, 2019-2026
   Abstract »    Full Text »    PDF »
The C-terminal Domain of the Long Form of Cellular FLICE-inhibitory Protein (c-FLIPL) Inhibits the Interaction of the Caspase 8 Prodomain with the Receptor-interacting Protein 1 (RIP1) Death Domain and Regulates Caspase 8-dependent Nuclear Factor {kappa}B (NF-{kappa}B) Activation.
I. Matsuda, K. Matsuo, Y. Matsushita, Y. Haruna, M. Niwa, and T. Kataoka (2014)
J. Biol. Chem. 289, 3876-3887
   Abstract »    Full Text »    PDF »
Receptor Interacting Protein Kinase-Mediated Necrosis Contributes to Cone and Rod Photoreceptor Degeneration in the Retina Lacking Interphotoreceptor Retinoid-Binding Protein.
K. Sato, S. Li, W. C. Gordon, J. He, G. I. Liou, J. M. Hill, G. H. Travis, N. G. Bazan, and M. Jin (2013)
J. Neurosci. 33, 17458-17468
   Abstract »    Full Text »    PDF »
Toll-like Receptor 3-mediated Necrosis via TRIF, RIP3, and MLKL.
W. J. Kaiser, H. Sridharan, C. Huang, P. Mandal, J. W. Upton, P. J. Gough, C. A. Sehon, R. W. Marquis, J. Bertin, and E. S. Mocarski (2013)
J. Biol. Chem. 288, 31268-31279
   Abstract »    Full Text »    PDF »
TNF-{alpha} Downregulates Inhibitory Neurotransmission through Protein Phosphatase 1-Dependent Trafficking of GABAA Receptors.
H. Pribiag and D. Stellwagen (2013)
J. Neurosci. 33, 15879-15893
   Abstract »    Full Text »    PDF »
TNF{alpha}-induced lysosomal membrane permeability is downstream of MOMP and triggered by caspase-mediated NDUFS1 cleavage and ROS formation.
J. Huai, F.-N. Vogtle, L. Jockel, Y. Li, T. Kiefer, J.-E. Ricci, and C. Borner (2013)
J. Cell Sci. 126, 4015-4025
   Abstract »    Full Text »    PDF »
RIP3: a molecular switch for necrosis and inflammation.
K. Moriwaki and F. K.-M. Chan (2013)
Genes & Dev. 27, 1640-1649
   Abstract »    Full Text »    PDF »
Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury.
A. Linkermann, J. H. Brasen, M. Darding, M. K. Jin, A. B. Sanz, J.-O. Heller, F. De Zen, R. Weinlich, A. Ortiz, H. Walczak, et al. (2013)
PNAS 110, 12024-12029
   Abstract »    Full Text »    PDF »
Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium.
C. Gunther, H. Neumann, M. F. Neurath, and C. Becker (2013)
Gut 62, 1062-1071
   Abstract »    Full Text »    PDF »
Diverse Sequence Determinants Control Human and Mouse Receptor Interacting Protein 3 (RIP3) and Mixed Lineage Kinase domain-Like (MLKL) Interaction in Necroptotic Signaling.
W. Chen, Z. Zhou, L. Li, C.-Q. Zhong, X. Zheng, X. Wu, Y. Zhang, H. Ma, D. Huang, W. Li, et al. (2013)
J. Biol. Chem. 288, 16247-16261
   Abstract »    Full Text »    PDF »
Death Receptor-Ligand Systems in Cancer, Cell Death, and Inflammation.
H. Walczak (2013)
Cold Spring Harb Perspect Biol 5, a008698
   Abstract »    Full Text »    PDF »
Functional Mechanotransduction Is Required for Cisplatin-Induced Hair Cell Death in the Zebrafish Lateral Line.
A. J. Thomas, D. W. Hailey, T. M. Stawicki, P. Wu, A. B. Coffin, E. W. Rubel, D. W. Raible, J. A. Simon, and H. C. Ou (2013)
J. Neurosci. 33, 4405-4414
   Abstract »    Full Text »    PDF »
Inhibitor of Apoptosis Proteins (IAPs) and Their Antagonists Regulate Spontaneous and Tumor Necrosis Factor (TNF)-induced Proinflammatory Cytokine and Chemokine Production.
C. J. Kearney, C. Sheridan, S. P. Cullen, G. A. Tynan, S. E. Logue, I. S. Afonina, D. Vucic, E. C. Lavelle, and S. J. Martin (2013)
J. Biol. Chem. 288, 4878-4890
   Abstract »    Full Text »    PDF »
Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice.
J. Karch, J. Q. Kwong, A. R. Burr, M. A. Sargent, J. W. Elrod, P. M. Peixoto, S. Martinez-Caballero, H. Osinska, E. H.-Y. Cheng, J. Robbins, et al. (2013)
eLife Sci 2, e00772
   Abstract »    Full Text »    PDF »
c-FLIP Maintains Tissue Homeostasis by Preventing Apoptosis and Programmed Necrosis.
X. Piao, S. Komazawa-Sakon, T. Nishina, M. Koike, J.-H. Piao, H. Ehlken, H. Kurihara, M. Hara, N. Van Rooijen, G. Schutz, et al. (2012)
Science Signaling 5, ra93
   Abstract »    Full Text »    PDF »
Investigation of Receptor interacting protein (RIP3)-dependent Protein Phosphorylation by Quantitative Phosphoproteomics.
X. Wu, L. Tian, J. Li, Y. Zhang, V. Han, Y. Li, X. Xu, H. Li, X. Chen, J. Chen, et al. (2012)
Mol. Cell. Proteomics 11, 1640-1651
   Abstract »    Full Text »    PDF »
Protease Activity of Procaspase-8 Is Essential for Cell Survival by Inhibiting Both Apoptotic and Nonapoptotic Cell Death Dependent on Receptor-interacting Protein Kinase 1 (RIP1) and RIP3.
M. Kikuchi, S. Kuroki, M. Kayama, S. Sakaguchi, K.-K. Lee, and S. Yonehara (2012)
J. Biol. Chem. 287, 41165-41173
   Abstract »    Full Text »    PDF »
Fueling the Flames: Mammalian Programmed Necrosis in Inflammatory Diseases.
F. K.-M. Chan (2012)
Cold Spring Harb Perspect Biol 4, a008805
   Abstract »    Full Text »    PDF »
Evidence For Multiple Cell Death Pathways during Development of Experimental Cytomegalovirus Retinitis in Mice with Retrovirus-Induced Immunosuppression: Apoptosis, Necroptosis, and Pyroptosis.
H. Chien and R. D. Dix (2012)
J. Virol. 86, 10961-10978
   Abstract »    Full Text »    PDF »
Mitochondrial Control of Cellular Life, Stress, and Death.
L. Galluzzi, O. Kepp, C. Trojel-Hansen, and G. Kroemer (2012)
Circ. Res. 111, 1198-1207
   Abstract »    Full Text »    PDF »
The H3K4me3 Histone Demethylase Fbxl10 Is a Regulator of Chemokine Expression, Cellular Morphology, and the Metabolome of Fibroblasts.
A. Janzer, K. Stamm, A. Becker, A. Zimmer, R. Buettner, and J. Kirfel (2012)
J. Biol. Chem. 287, 30984-30992
   Abstract »    Full Text »    PDF »
Receptor interacting protein kinase mediates necrotic cone but not rod cell death in a mouse model of inherited degeneration.
Y. Murakami, H. Matsumoto, M. Roh, J. Suzuki, T. Hisatomi, Y. Ikeda, J. W. Miller, and D. G. Vavvas (2012)
PNAS 109, 14598-14603
   Abstract »    Full Text »    PDF »
Programmed necrosis in acute kidney injury.
A. Linkermann, F. De Zen, J. Weinberg, U. Kunzendorf, and S. Krautwald (2012)
Nephrol. Dial. Transplant. 27, 3412-3419
   Abstract »    Full Text »    PDF »
Interferon-{beta}-armed oncolytic adenovirus induces both apoptosis and necroptosis in cancer cells.
H. Huang, T. Xiao, L. He, H. Ji, and X.-Y. Liu (2012)
Acta Biochim Biophys Sin 44, 737-745
   Abstract »    Full Text »    PDF »
Mechanisms of Cell Death in Heart Disease.
K. Konstantinidis, R. S. Whelan, and R. N. Kitsis (2012)
Arterioscler Thromb Vasc Biol 32, 1552-1562
   Abstract »    Full Text »    PDF »
GRIM-19-mediated translocation of STAT3 to mitochondria is necessary for TNF-induced necroptosis.
N. Shulga and J. G. Pastorino (2012)
J. Cell Sci. 125, 2995-3003
   Abstract »    Full Text »    PDF »
Pax2 regulates a fadd-dependent molecular switch that drives tissue fusion during eye development.
I. A. Viringipurampeer, T. Ferreira, S. DeMaria, J. J. Yoon, X. Shan, M. Moosajee, K. Gregory-Evans, J. Ngai, and C. Y. Gregory-Evans (2012)
Hum. Mol. Genet. 21, 2357-2369
   Abstract »    Full Text »    PDF »
Intermediate Domain of Receptor-interacting Protein Kinase 1 (RIPK1) Determines Switch between Necroptosis and RIPK1 Kinase-dependent Apoptosis.
L. Duprez, M. J. M. Bertrand, T. Vanden Berghe, Y. Dondelinger, N. Festjens, and P. Vandenabeele (2012)
J. Biol. Chem. 287, 14863-14872
   Abstract »    Full Text »    PDF »
Caspase-8 is essential for maintaining chromosomal stability and suppressing B-cell lymphomagenesis.
A. Hakem, S. El Ghamrasni, G. Maire, B. Lemmers, J. Karaskova, A. Jurisicova, O. Sanchez, J. Squire, and R. Hakem (2012)
Blood 119, 3495-3502
   Abstract »    Full Text »    PDF »
Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis.
J. Zhao, S. Jitkaew, Z. Cai, S. Choksi, Q. Li, J. Luo, and Z.-G. Liu (2012)
PNAS 109, 5322-5327
   Abstract »    Full Text »    PDF »
Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production.
G. B. Fortes, L. S. Alves, R. de Oliveira, F. F. Dutra, D. Rodrigues, P. L. Fernandez, T. Souto-Padron, M. J. De Rosa, M. Kelliher, D. Golenbock, et al. (2012)
Blood 119, 2368-2375
   Abstract »    Full Text »    PDF »
Signaling in Innate Immunity and Inflammation.
K. Newton and V. M. Dixit (2012)
Cold Spring Harb Perspect Biol 4, a006049
   Abstract »    Full Text »    PDF »
Mitochondria and cell signalling.
S. W. G. Tait and D. R. Green (2012)
J. Cell Sci. 125, 807-815
   Abstract »    Full Text »    PDF »
Plasmalemma Permeability and Necrotic Cell Death Phenotypes After Intracerebral Hemorrhage in Mice.
X. Zhu, L. Tao, E. Tejima-Mandeville, J. Qiu, J. Park, K. Garber, M. Ericsson, E. H. Lo, and M. J. Whalen (2012)
Stroke 43, 524-531
   Abstract »    Full Text »    PDF »
Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway.
S. He, Y. Liang, F. Shao, and X. Wang (2011)
PNAS 108, 20054-20059
   Abstract »    Full Text »    PDF »
Conserved metabolic energy production pathways govern Eiger/TNF-induced nonapoptotic cell death.
H. Kanda, T. Igaki, H. Okano, and M. Miura (2011)
PNAS 108, 18977-18982
   Abstract »    Full Text »    PDF »
Cutting Edge: Regulatory T Cells Do Not Mediate Suppression via Programmed Cell Death Pathways.
A. L. Szymczak-Workman, G. M. Delgoffe, D. R. Green, and D. A. A. Vignali (2011)
J. Immunol. 187, 4416-4420
   Abstract »    Full Text »    PDF »
Caspase-8 inactivation in T cells increases necroptosis and suppresses autoimmunity in Bim-/- mice.
T. Bohgaki, J. Mozo, L. Salmena, E. Matysiak-Zablocki, M. Bohgaki, O. Sanchez, A. Strasser, A. Hakem, and R. Hakem (2011)
J. Cell Biol. 195, 277-291
   Abstract »    Full Text »    PDF »
Causes and consequences of stolon regression in a colonial hydroid.
K. S. C. Vogt, K. L. Harmata, H. L. Coulombe, L. S. Bross, and N. W. Blackstone (2011)
J. Exp. Biol. 214, 3197-3205
   Abstract »    Full Text »    PDF »
Caspase-1 Protein Induces Apoptosis-associated Speck-like Protein Containing a Caspase Recruitment Domain (ASC)-mediated Necrosis Independently of Its Catalytic Activity.
K. Motani, H. Kushiyama, R. Imamura, T. Kinoshita, T. Nishiuchi, and T. Suda (2011)
J. Biol. Chem. 286, 33963-33972
   Abstract »    Full Text »    PDF »
Modulatory profiling identifies mechanisms of small molecule-induced cell death.
A. J. Wolpaw, K. Shimada, R. Skouta, M. E. Welsch, U. D. Akavia, D. Pe'er, F. Shaik, J. C. Bulinski, and B. R. Stockwell (2011)
PNAS 108, E771-E780
   Abstract »    Full Text »    PDF »
Requirement of FADD, NEMO, and BAX/BAK for Aberrant Mitochondrial Function in Tumor Necrosis Factor Alpha-Induced Necrosis.
K. M. Irrinki, K. Mallilankaraman, R. J. Thapa, H. C. Chandramoorthy, F. J. Smith, N. R. Jog, R. K. Gandhirajan, S. G. Kelsen, S. R. Houser, M. J. May, et al. (2011)
Mol. Cell. Biol. 31, 3745-3758
   Abstract »    Full Text »    PDF »
Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity.
J. V. Lu, B. M. Weist, B. J. van Raam, B. S. Marro, L. V. Nguyen, P. Srinivas, B. D. Bell, K. A. Luhrs, T. E. Lane, G. S. Salvesen, et al. (2011)
PNAS 108, 15312-15317
   Abstract »    Full Text »    PDF »
NF-{kappa}B Protects Cells from Gamma Interferon-Induced RIP1-Dependent Necroptosis.
R. J. Thapa, S. H. Basagoudanavar, S. Nogusa, K. Irrinki, K. Mallilankaraman, M. J. Slifker, A. A. Beg, M. Madesh, and S. Balachandran (2011)
Mol. Cell. Biol. 31, 2934-2946
   Abstract »    Full Text »    PDF »
24(S)-Hydroxycholesterol Induces Neuronal Cell Death through Necroptosis, a Form of Programmed Necrosis.
K. Yamanaka, Y. Saito, T. Yamamori, Y. Urano, and N. Noguchi (2011)
J. Biol. Chem. 286, 24666-24673
   Abstract »    Full Text »    PDF »
Age-Dependent Increases in Apoptosis/Necrosis Ratios in Human Lymphocytes Exposed to Oxidative Stress.
M. I. Behrens, M. Silva, A. Schmied, F. Salech, H. Manzur, R. Rebolledo, R. Bull, V. Torres, M. Henriquez, and A. F. G. Quest (2011)
J Gerontol A Biol Sci Med Sci 66A, 732-740
   Abstract »    Full Text »    PDF »
High-Throughput Screen Identifies Novel Inhibitors of Cancer Biomarker {alpha}-Methylacyl Coenzyme A Racemase (AMACR/P504S).
B. A. P. Wilson, H. Wang, B. A. Nacev, R. C. Mease, J. O. Liu, M. G. Pomper, and W. B. Isaacs (2011)
Mol. Cancer Ther. 10, 825-838
   Abstract »    Full Text »    PDF »
Programmed Necrosis, Not Apoptosis, in the Heart.
G. Kung, K. Konstantinidis, and R. N. Kitsis (2011)
Circ. Res. 108, 1017-1036
   Abstract »    Full Text »    PDF »
Mechanisms of necroptosis in T cells.
I. L. Ch'en, J. S. Tsau, J. D. Molkentin, M. Komatsu, and S. M. Hedrick (2011)
J. Exp. Med. 208, 633-641
   Abstract »    Full Text »    PDF »
The unexpected link between infection-induced apoptosis and a TH17 immune response.
C. F. Brereton and J. M. Blander (2011)
J. Leukoc. Biol. 89, 565-576
   Abstract »    Full Text »    PDF »
Distinct Roles for the NF-{kappa}B RelA Subunit during Antiviral Innate Immune Responses.
S. H. Basagoudanavar, R. J. Thapa, S. Nogusa, J. Wang, A. A. Beg, and S. Balachandran (2011)
J. Virol. 85, 2599-2610
   Abstract »    Full Text »    PDF »
The death domain kinase RIP1 links the immunoregulatory CD40 receptor to apoptotic signaling in carcinomas.
P. G. Knox, C. C. Davies, M. Ioannou, and A. G. Eliopoulos (2011)
J. Cell Biol. 192, 391-399
   Abstract »    Full Text »    PDF »
Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis.
G. Trichonas, Y. Murakami, A. Thanos, Y. Morizane, M. Kayama, C. M. Debouck, T. Hisatomi, J. W. Miller, and D. G. Vavvas (2010)
PNAS 107, 21695-21700
   Abstract »    Full Text »    PDF »
Alternative cell death mechanisms in development and beyond.
J. Yuan and G. Kroemer (2010)
Genes & Dev. 24, 2592-2602
   Abstract »    Full Text »    PDF »
Jiahuai Han: Aflame on inflammation and p38.
C. Sedwick (2010)
J. Cell Biol. 191, 228-229
   Full Text »    PDF »
Coenzyme Q protects Caenorhabditis elegans GABA neurons from calcium-dependent degeneration.
L. R. Earls, M. L. Hacker, J. D. Watson, and D. M. Miller III (2010)
PNAS 107, 14460-14465
   Abstract »    Full Text »    PDF »
Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis.
S. L. Osborn, G. Diehl, S.-J. Han, L. Xue, N. Kurd, K. Hsieh, D. Cado, E. A. Robey, and A. Winoto (2010)
PNAS 107, 13034-13039
   Abstract »    Full Text »    PDF »
Hepatocyte Death: A Clear and Present Danger.
H. Malhi, M. E. Guicciardi, and G. J. Gores (2010)
Physiol Rev 90, 1165-1194
   Abstract »    Full Text »    PDF »
Tumor Necrosis Factor (TNF) Signaling, but Not TWEAK (TNF-like Weak Inducer of Apoptosis)-triggered cIAP1 (Cellular Inhibitor of Apoptosis Protein 1) Degradation, Requires cIAP1 RING Dimerization and E2 Binding.
R. Feltham, M. Moulin, J. E. Vince, P. D. Mace, W. W. L. Wong, H. Anderton, C. L. Day, D. L. Vaux, and J. Silke (2010)
J. Biol. Chem. 285, 17525-17536
   Abstract »    Full Text »    PDF »
The Role of the Kinases RIP1 and RIP3 in TNF-Induced Necrosis.
P. Vandenabeele, W. Declercq, F. Van Herreweghe, and T. Vanden Berghe (2010)
Science Signaling 3, re4
   Abstract »    Full Text »    PDF »
Receptor Interacting Protein 3 Suppresses Vascular Smooth Muscle Cell Growth by Inhibition of the Phosphoinositide 3-Kinase-Akt Axis.
Q. Li, G. Li, X. Lan, M. Zheng, K.-H. Chen, C.-M. Cao, and R.-P. Xiao (2010)
J. Biol. Chem. 285, 9535-9544
   Abstract »    Full Text »    PDF »
Targeting a Novel N-terminal Epitope of Death Receptor 5 Triggers Tumor Cell Death.
P. Zhang, Y. Zheng, J. Shi, Y. Zhang, S. Liu, Y. Liu, and D. Zheng (2010)
J. Biol. Chem. 285, 8953-8966
   Abstract »    Full Text »    PDF »
GSK-3{beta} promotes cell survival by modulating Bif-1-dependent autophagy and cell death.
J. Yang, Y. Takahashi, E. Cheng, J. Liu, P. F. Terranova, B. Zhao, J. B. Thrasher, H.-G. Wang, and B. Li (2010)
J. Cell Sci. 123, 861-870
   Abstract »    Full Text »    PDF »
Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment.
P. Geserick, M. Hupe, M. Moulin, W. W.-L. Wong, M. Feoktistova, B. Kellert, H. Gollnick, J. Silke, and M. Leverkus (2009)
J. Cell Biol. 187, 1037-1054
   Abstract »    Full Text »    PDF »
RIP Kinases Initiate Programmed Necrosis.
L. Galluzzi, O. Kepp, and G. Kroemer (2009)
J Mol Cell Biol 1, 8-10
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882