Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 325 (5942): 834-840

Copyright © 2009 by the American Association for the Advancement of Science

Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions

Chunaram Choudhary,1,2 Chanchal Kumar,1 Florian Gnad,1 Michael L. Nielsen,1,2 Michael Rehman,3 Tobias C. Walther,3 Jesper V. Olsen,1,2 Matthias Mann1,2,*

Abstract: Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation’s cellular roles. We used high-resolution mass spectrometry to identify 3600 lysine acetylation sites on 1750 proteins and quantified acetylation changes in response to the deacetylase inhibitors suberoylanilide hydroxamic acid and MS-275. Lysine acetylation preferentially targets large macromolecular complexes involved in diverse cellular processes, such as chromatin remodeling, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other major posttranslational modifications.

1 Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany.
2 The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
3 Organelle Architecture and Dynamics, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany.

* To whom correspondence should be addressed. E-mail: mmann{at}biochem.mpg.de


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Proteomic snapshot of the EGF-induced ubiquitin network.
E. Argenzio, T. Bange, B. Oldrini, F. Bianchi, R. Peesari, S. Mari, P. P. Di Fiore, M. Mann, and S. Polo (2014)
Mol Syst Biol 7, 462
   Abstract »    Full Text »    PDF »
Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium.
V. van Noort, J. Seebacher, S. Bader, S. Mohammed, I. Vonkova, M. J. Betts, S. Kuhner, R. Kumar, T. Maier, M. O'Flaherty, et al. (2014)
Mol Syst Biol 8, 571
   Abstract »    Full Text »    PDF »
Endocrine disruption of the epigenome: a breast cancer link.
K. C. Knower, S. Q. To, Y.-K. Leung, S.-M. Ho, and C. D. Clyne (2014)
Endocr. Relat. Cancer 21, T33-T55
   Abstract »    Full Text »    PDF »
Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation.
W. Aik, J. S. Scotti, H. Choi, L. Gong, M. Demetriades, C. J. Schofield, and M. A. McDonough (2014)
Nucleic Acids Res. 42, 4741-4754
   Abstract »    Full Text »    PDF »
P21-Driven Multifusion Gene System for Evaluating the Efficacy of Histone Deacetylase Inhibitors by In Vivo Molecular Imaging and for Transcription Targeting Therapy of Cancer Mediated by Histone Deacetylase Inhibitor.
Y.-J. Hsieh, L. Hwu, Y.-C. Chen, C.-C. Ke, F.-D. Chen, H.-E. Wang, K.-P. Lin, H.-H. Yeh, C.-W. Chang, and R.-S. Liu (2014)
J. Nucl. Med. 55, 678-685
   Abstract »    Full Text »    PDF »
Erasers of Histone Acetylation: The Histone Deacetylase Enzymes.
E. Seto and M. Yoshida (2014)
Cold Spring Harb Perspect Biol 6, a018713
   Abstract »    Full Text »    PDF »
Regulation of Acetylation of Histone Deacetylase 2 by p300/CBP-Associated Factor/Histone Deacetylase 5 in the Development of Cardiac Hypertrophy.
G. H. Eom, Y. S. Nam, J. G. Oh, N. Choe, H.-K. Min, E.-K. Yoo, G. Kang, V. H. Nguyen, J.-J. Min, J.-K. Kim, et al. (2014)
Circ. Res. 114, 1133-1143
   Abstract »    Full Text »    PDF »
Evolution and functional cross-talk of protein post-translational modifications.
P. Beltrao, P. Bork, N. J. Krogan, and V. van Noort (2014)
Mol Syst Biol 9, 714
   Abstract »    Full Text »    PDF »
Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.
B. T. Weinert, V. Iesmantavicius, T. Moustafa, C. Scholz, S. A. Wagner, C. Magnes, R. Zechner, and C. Choudhary (2014)
Mol Syst Biol 10, 716
   Abstract »    Full Text »    PDF »
SIRT3 Deacetylates and Activates OPA1 To Regulate Mitochondrial Dynamics during Stress.
S. A. Samant, H. J. Zhang, Z. Hong, V. B. Pillai, N. R. Sundaresan, D. Wolfgeher, S. L. Archer, D. C. Chan, and M. P. Gupta (2014)
Mol. Cell. Biol. 34, 807-819
   Abstract »    Full Text »    PDF »
The Arabidopsis Class II Sirtuin Is a Lysine Deacetylase and Interacts with Mitochondrial Energy Metabolism.
A.-C. Konig, M. Hartl, P. A. Pham, M. Laxa, P. J. Boersema, A. Orwat, I. Kalitventseva, M. Plochinger, H.-P. Braun, D. Leister, et al. (2014)
Plant Physiology 164, 1401-1414
   Abstract »    Full Text »    PDF »
Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors.
M. Bots, I. Verbrugge, B. P. Martin, J. M. Salmon, M. Ghisi, A. Baker, K. Stanley, J. Shortt, G. J. Ossenkoppele, J. Zuber, et al. (2014)
Blood 123, 1341-1352
   Abstract »    Full Text »    PDF »
Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation.
O. Pougovkina, H. te Brinke, R. Ofman, A. G. van Cruchten, W. Kulik, R. J. A. Wanders, S. M. Houten, and V. C. J. de Boer (2014)
Hum. Mol. Genet.
   Abstract »    Full Text »    PDF »
Glyceraldehyde-3-phosphate Dehydrogenase Is Activated by Lysine 254 Acetylation in Response to Glucose Signal.
T. Li, M. Liu, X. Feng, Z. Wang, I. Das, Y. Xu, X. Zhou, Y. Sun, K.-L. Guan, Y. Xiong, et al. (2014)
J. Biol. Chem. 289, 3775-3785
   Abstract »    Full Text »    PDF »
Lung development: orchestrating the generation and regeneration of a complex organ.
M. Herriges and E. E. Morrisey (2014)
Development 141, 502-513
   Abstract »    Full Text »    PDF »
RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing.
D. H. Khan, C. Gonzalez, C. Cooper, J.-M. Sun, H. Y. Chen, S. Healy, W. Xu, K. T. Smith, J. L. Workman, E. Leygue, et al. (2014)
Nucleic Acids Res. 42, 1656-1670
   Abstract »    Full Text »    PDF »
Aldose Reductase Drives Hyperacetylation of Egr-1 in Hyperglycemia and Consequent Upregulation of Proinflammatory and Prothrombotic Signals.
S. Vedantham, D. Thiagarajan, R. Ananthakrishnan, L. Wang, R. Rosario, Y. S. Zou, I. Goldberg, S. F. Yan, A. M. Schmidt, and R. Ramasamy (2014)
Diabetes 63, 761-774
   Abstract »    Full Text »    PDF »
Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness.
L.-S. Z. Rathje, N. Nordgren, T. Pettersson, D. Ronnlund, J. Widengren, P. Aspenstrom, and A. K. B. Gad (2014)
PNAS 111, 1515-1520
   Abstract »    Full Text »    PDF »
Histone Deacetylase Classes I and II Regulate Kaposi's Sarcoma-Associated Herpesvirus Reactivation.
H. J. Shin, J. DeCotiis, M. Giron, D. Palmeri, and D. M. Lukac (2014)
J. Virol. 88, 1281-1292
   Abstract »    Full Text »    PDF »
Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure.
S. C. Howes, G. M. Alushin, T. Shida, M. V. Nachury, and E. Nogales (2014)
Mol. Biol. Cell 25, 257-266
   Abstract »    Full Text »    PDF »
Microtubule Dynamic Instability Controls Podosome Patterning in Osteoclasts through EB1, Cortactin, and Src.
M. Biosse Duplan, D. Zalli, S. Stephens, S. Zenger, L. Neff, J. M. Oelkers, F. P. L. Lai, W. Horne, K. Rottner, and R. Baron (2014)
Mol. Cell. Biol. 34, 16-29
   Abstract »    Full Text »    PDF »
Histone Deacetylases: A Saga of Perturbed Acetylation Homeostasis in Cancer.
S. Parbin, S. Kar, A. Shilpi, D. Sengupta, M. Deb, S. K. Rath, and S. K. Patra (2014)
Journal of Histochemistry & Cytochemistry 62, 11-33
   Abstract »    Full Text »    PDF »
Extensive Post-translational Modification of Active and Inactivated Forms of Endogenous p53.
C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman (2014)
Mol. Cell. Proteomics 13, 1-17
   Abstract »    Full Text »    PDF »
Proteomic Profiling Identified Multiple Short-lived Members of the Central Proteome as the Direct Targets of the Addicted Oncogenes in Cancer Cells.
T. Qi, W. Zhang, Y. Luan, F. Kong, D. Xu, G. Cheng, and Y. Wang (2014)
Mol. Cell. Proteomics 13, 49-62
   Abstract »    Full Text »    PDF »
Immunoaffinity Enrichment and Mass Spectrometry Analysis of Protein Methylation.
A. Guo, H. Gu, J. Zhou, D. Mulhern, Y. Wang, K. A. Lee, V. Yang, M. Aguiar, J. Kornhauser, X. Jia, et al. (2014)
Mol. Cell. Proteomics 13, 372-387
   Abstract »    Full Text »    PDF »
The SUMO proteases SENP1 and SENP2 play a critical role in nucleoporin homeostasis and nuclear pore complex function.
K.-H. Chow, S. Elgort, M. Dasso, M. A. Powers, and K. S. Ullman (2014)
Mol. Biol. Cell 25, 160-168
   Abstract »    Full Text »    PDF »
Cyclophilin D Modulates Mitochondrial Acetylome.
T. T. M. Nguyen, R. Wong, S. Menazza, J. Sun, Y. Chen, G. Wang, M. Gucek, C. Steenbergen, M. N. Sack, and E. Murphy (2013)
Circ. Res. 113, 1308-1319
   Abstract »    Full Text »    PDF »
Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective.
W. C. van Heeswijk, H. V. Westerhoff, and F. C. Boogerd (2013)
Microbiol. Mol. Biol. Rev. 77, 628-695
   Abstract »    Full Text »    PDF »
Structure and properties of the esterase from non-LTR retrotransposons suggest a role for lipids in retrotransposition.
A. M. Schneider, S. Schmidt, S. Jonas, B. Vollmer, E. Khazina, and O. Weichenrieder (2013)
Nucleic Acids Res. 41, 10563-10572
   Abstract »    Full Text »    PDF »
Identification of Lysine Succinylation Substrates and the Succinylation Regulatory Enzyme CobB in Escherichia coli.
G. Colak, Z. Xie, A. Y. Zhu, L. Dai, Z. Lu, Y. Zhang, X. Wan, Y. Chen, Y. H. Cha, H. Lin, et al. (2013)
Mol. Cell. Proteomics 12, 3509-3520
   Abstract »    Full Text »    PDF »
Alpha-synuclein Post-translational Modifications as Potential Biomarkers for Parkinson Disease and Other Synucleinopathies.
A. W. Schmid, B. Fauvet, M. Moniatte, and H. A. Lashuel (2013)
Mol. Cell. Proteomics 12, 3543-3558
   Abstract »    Full Text »    PDF »
Regulation of Acetylation Restores Proteolytic Function of Diseased Myocardium in Mouse and Human.
D. Wang, C. Fang, N. C. Zong, D. A. Liem, M. Cadeiras, S. B. Scruggs, H. Yu, A. K. Kim, P. Yang, M. Deng, et al. (2013)
Mol. Cell. Proteomics 12, 3793-3802
   Abstract »    Full Text »    PDF »
Advances in Understanding the Expression and Function of Dipeptidyl Peptidase 8 and 9.
H. Zhang, Y. Chen, F. M. Keane, and M. D. Gorrell (2013)
Mol. Cancer Res. 11, 1487-1496
   Abstract »    Full Text »    PDF »
Molecular and Biologic Analysis of Histone Deacetylase Inhibitors with Diverse Specificities.
A. Newbold, G. M. Matthews, M. Bots, L. A. Cluse, C. J. P. Clarke, K.-M. Banks, C. Cullinane, J. E. Bolden, A. J. Christiansen, R. A. Dickins, et al. (2013)
Mol. Cancer Ther. 12, 2709-2721
   Abstract »    Full Text »    PDF »
The Antiparasitic Clioquinol Induces Apoptosis in Leukemia and Myeloma Cells by Inhibiting Histone Deacetylase Activity.
B. Cao, J. Li, J. Zhu, M. Shen, K. Han, Z. Zhang, Y. Yu, Y. Wang, D. Wu, S. Chen, et al. (2013)
J. Biol. Chem. 288, 34181-34189
   Abstract »    Full Text »    PDF »
The sirtuin SIRT6 regulates stress granule formation in C. elegans and mammals.
M. Jedrusik-Bode, M. Studencka, C. Smolka, T. Baumann, H. Schmidt, J. Kampf, F. Paap, S. Martin, J. Tazi, K. M. Muller, et al. (2013)
J. Cell Sci. 126, 5166-5177
   Abstract »    Full Text »    PDF »
Interrogating cAMP-dependent Kinase Signaling in Jurkat T Cells via a Protein Kinase A Targeted Immune-precipitation Phosphoproteomics Approach.
P. Giansanti, M. P. Stokes, J. C. Silva, A. Scholten, and A. J. R. Heck (2013)
Mol. Cell. Proteomics 12, 3350-3359
   Abstract »    Full Text »    PDF »
Lysine deacetylase inhibition promotes relaxation of arterial tone and C-terminal acetylation of HSPB6 (Hsp20) in vascular smooth muscle cells.
A. Chen, M. Karolczak-Bayatti, M. le Sweeney, A. Treumann, K. Morrissey, S. M. Ulrich, G. Nicholas Europe-Finner, and M. J. Taggart (2013)
PHY2 1, e00127
   Abstract »    Full Text »    PDF »
Phase Ib Study of Panobinostat and Bortezomib in Relapsed or Relapsed and Refractory Multiple Myeloma.
J. F. San-Miguel, P. G. Richardson, A. Gunther, O. Sezer, D. Siegel, J. Blade, R. LeBlanc, H. Sutherland, M. Sopala, K. K. Mishra, et al. (2013)
J. Clin. Oncol. 31, 3696-3703
   Abstract »    Full Text »    PDF »
Class I Lysine Deacetylases Facilitate Glucocorticoid-induced Transcription.
V. Kadiyala, N. M. Patrick, W. Mathieu, R. Jaime-Frias, N. Pookhao, L. An, and C. L. Smith (2013)
J. Biol. Chem. 288, 28900-28912
   Abstract »    Full Text »    PDF »
Widespread and Enzyme-independent N{epsilon}-Acetylation and N{epsilon}-Succinylation of Proteins in the Chemical Conditions of the Mitochondrial Matrix.
G. R. Wagner and R. M. Payne (2013)
J. Biol. Chem. 288, 29036-29045
   Abstract »    Full Text »    PDF »
DNMT1 Is Regulated by ATP-Citrate Lyase and Maintains Methylation Patterns during Adipocyte Differentiation.
T. Londono Gentile, C. Lu, P. M. Lodato, S. Tse, S. H. Olejniczak, E. S. Witze, C. B. Thompson, and K. E. Wellen (2013)
Mol. Cell. Biol. 33, 3864-3878
   Abstract »    Full Text »    PDF »
Sirt3 Regulates Metabolic Flexibility of Skeletal Muscle Through Reversible Enzymatic Deacetylation.
E. Jing, B. T. O'Neill, M. J. Rardin, A. Kleinridders, O. R. Ilkeyeva, S. Ussar, J. R. Bain, K. Y. Lee, E. M. Verdin, C. B. Newgard, et al. (2013)
Diabetes 62, 3404-3417
   Abstract »    Full Text »    PDF »
Active Glutaminase C Self-assembles into a Supratetrameric Oligomer That Can Be Disrupted by an Allosteric Inhibitor.
A. P. S. Ferreira, A. Cassago, K. d. A. Goncalves, M. M. Dias, D. Adamoski, C. F. R. Ascencao, R. V. Honorato, J. F. de Oliveira, I. M. Ferreira, C. Fornezari, et al. (2013)
J. Biol. Chem. 288, 28009-28020
   Abstract »    Full Text »    PDF »
Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition.
J. P. Lopez-Atalaya, S. Ito, L. M. Valor, E. Benito, and A. Barco (2013)
Nucleic Acids Res. 41, 8072-8084
   Abstract »    Full Text »    PDF »
Targeted Identification of SUMOylation Sites in Human Proteins Using Affinity Enrichment and Paralog-specific Reporter Ions.
F. Lamoliatte, E. Bonneil, C. Durette, O. Caron-Lizotte, D. Wildemann, J. Zerweck, H. Wenshuk, and P. Thibault (2013)
Mol. Cell. Proteomics 12, 2536-2550
   Abstract »    Full Text »    PDF »
Nucleosome Remodeling and Epigenetics.
P. B. Becker and J. L. Workman (2013)
Cold Spring Harb Perspect Biol 5, a017905
   Abstract »    Full Text »    PDF »
Histone Deacetylase 7 Promotes Toll-like Receptor 4-dependent Proinflammatory Gene Expression in Macrophages.
M. R. Shakespear, D. M. Hohenhaus, G. M. Kelly, N. A. Kamal, P. Gupta, L. I. Labzin, K. Schroder, V. Garceau, S. Barbero, A. Iyer, et al. (2013)
J. Biol. Chem. 288, 25362-25374
   Abstract »    Full Text »    PDF »
Mice Lacking {alpha}-Tubulin Acetyltransferase 1 Are Viable but Display {alpha}-Tubulin Acetylation Deficiency and Dentate Gyrus Distortion.
G.-W. Kim, L. Li, M. Gorbani, L. You, and X.-J. Yang (2013)
J. Biol. Chem. 288, 20334-20350
   Abstract »    Full Text »    PDF »
Histone deacetylase 10 promotes autophagy-mediated cell survival.
I. Oehme, J.-P. Linke, B. C. Bock, T. Milde, M. Lodrini, B. Hartenstein, I. Wiegand, C. Eckert, W. Roth, M. Kool, et al. (2013)
PNAS 110, E2592-E2601
   Abstract »    Full Text »    PDF »
Expanding Proteostasis by Membrane Trafficking Networks.
D. M. Hutt and W. E. Balch (2013)
Cold Spring Harb Perspect Biol 5, a013383
   Abstract »    Full Text »    PDF »
Stem cell metabolism in tissue development and aging.
N. Shyh-Chang, G. Q. Daley, and L. C. Cantley (2013)
Development 140, 2535-2547
   Abstract »    Full Text »    PDF »
Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy.
B. S. Ferguson, B. C. Harrison, M. Y. Jeong, B. G. Reid, M. F. Wempe, F. F. Wagner, E. B. Holson, and T. A. McKinsey (2013)
PNAS 110, 9806-9811
   Abstract »    Full Text »    PDF »
Site-specific Acetylation of the Proteasome Activator REG{gamma} Directs Its Heptameric Structure and Functions.
J. Liu, Y. Wang, L. Li, L. Zhou, H. Wei, Q. Zhou, J. Liu, W. Wang, L. Ji, P. Shan, et al. (2013)
J. Biol. Chem. 288, 16567-16578
   Abstract »    Full Text »    PDF »
CyclinB1/Cdk1 phosphorylates mitochondrial antioxidant MnSOD in cell adaptive response to radiation stress.
D. Candas, M. Fan, D. Nantajit, A. T. Vaughan, J. S. Murley, G. E. Woloschak, D. J. Grdina, and J. J. Li (2013)
J Mol Cell Biol 5, 166-175
   Abstract »    Full Text »    PDF »
Specific Acetylation of p53 by HDAC Inhibition Prevents DNA Damage-Induced Apoptosis in Neurons.
C. Brochier, G. Dennis, M. A. Rivieccio, K. McLaughlin, G. Coppola, R. R. Ratan, and B. Langley (2013)
J. Neurosci. 33, 8621-8632
   Abstract »    Full Text »    PDF »
Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1.
I. Andolfo, S. L. Alper, L. De Franceschi, C. Auriemma, R. Russo, L. De Falco, F. Vallefuoco, M. R. Esposito, D. H. Vandorpe, B. E. Shmukler, et al. (2013)
Blood 121, 3925-3935
   Abstract »    Full Text »    PDF »
A Tale of Metabolites: The Cross-Talk between Chromatin and Energy Metabolism.
B. Martinez-Pastor, C. Cosentino, and R. Mostoslavsky (2013)
Cancer Discovery 3, 497-501
   Abstract »    Full Text »    PDF »
Cancers with wrong HATs: the impact of acetylation.
V. Di Cerbo and R. Schneider (2013)
Briefings in Functional Genomics 12, 231-243
   Abstract »    Full Text »    PDF »
Protein Interactions, Post-translational Modifications and Topologies in Human Cells.
J. D. Chavez, C. R. Weisbrod, C. Zheng, J. K. Eng, and J. E. Bruce (2013)
Mol. Cell. Proteomics 12, 1451-1467
   Abstract »    Full Text »    PDF »
Quantitative Dynamics of the Link between Cellular Metabolism and Histone Acetylation.
A. G. Evertts, B. M. Zee, P. A. DiMaggio, M. Gonzales-Cope, H. A. Coller, and B. A. Garcia (2013)
J. Biol. Chem. 288, 12142-12151
   Abstract »    Full Text »    PDF »
mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases.
L. Mitchell, S. Huard, M. Cotrut, R. Pourhanifeh-Lemeri, A.-L. Steunou, A. Hamza, J.-P. Lambert, H. Zhou, Z. Ning, A. Basu, et al. (2013)
PNAS 110, E1641-E1650
   Abstract »    Full Text »    PDF »
Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.
M. J. Rardin, J. C. Newman, J. M. Held, M. P. Cusack, D. J. Sorensen, B. Li, B. Schilling, S. D. Mooney, C. R. Kahn, E. Verdin, et al. (2013)
PNAS 110, 6601-6606
   Abstract »    Full Text »    PDF »
A High-Confidence Interaction Map Identifies SIRT1 as a Mediator of Acetylation of USP22 and the SAGA Coactivator Complex.
S. M. Armour, E. J. Bennett, C. R. Braun, X.-Y. Zhang, S. B. McMahon, S. P. Gygi, J. W. Harper, and D. A. Sinclair (2013)
Mol. Cell. Biol. 33, 1487-1502
   Abstract »    Full Text »    PDF »
Neuronal Sirt1 Deficiency Increases Insulin Sensitivity in Both Brain and Peripheral Tissues.
M. Lu, D. A. Sarruf, P. Li, O. Osborn, M. Sanchez-Alavez, S. Talukdar, A. Chen, G. Bandyopadhyay, J. Xu, H. Morinaga, et al. (2013)
J. Biol. Chem. 288, 10722-10735
   Abstract »    Full Text »    PDF »
Human SIRT1 regulates DNA binding and stability of the Mcm10 DNA replication factor via deacetylation.
S. T. Fatoba, S. Tognetti, M. Berto, E. Leo, C. M. Mulvey, J. Godovac-Zimmermann, Y. Pommier, and A. L. Okorokov (2013)
Nucleic Acids Res. 41, 4065-4079
   Abstract »    Full Text »    PDF »
Sirt1 inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis.
J. Monteserin-Garcia, O. Al-Massadi, L. M. Seoane, C. V. Alvarez, B. Shan, J. Stalla, M. Paez-Pereda, F. F. Casanueva, G. K. Stalla, and M. Theodoropoulou (2013)
FASEB J 27, 1561-1571
   Abstract »    Full Text »    PDF »
Ubc9 acetylation modulates distinct SUMO target modification and hypoxia response.
Y.-L. Hsieh, H.-Y. Kuo, C.-C. Chang, M. T. Naik, P.-H. Liao, C.-C. Ho, T.-C. Huang, J.-C. Jeng, P.-H. Hsu, M.-D. Tsai, et al. (2013)
EMBO J. 32, 791-804
   Abstract »    Full Text »    PDF »
Tubulin Acetyltransferase {alpha}TAT1 Destabilizes Microtubules Independently of Its Acetylation Activity.
N. Kalebic, C. Martinez, E. Perlas, P. Hublitz, D. Bilbao-Cortes, K. Fiedorczuk, A. Andolfo, and P. A. Heppenstall (2013)
Mol. Cell. Biol. 33, 1114-1123
   Abstract »    Full Text »    PDF »
The Presence of HIV-1 Tat Protein Second Exon Delays Fas Protein-mediated Apoptosis in CD4+ T Lymphocytes: A POTENTIAL MECHANISM FOR PERSISTENT VIRAL PRODUCTION.
M. R. Lopez-Huertas, E. Mateos, M. Sanchez del Cojo, F. Gomez-Esquer, G. Diaz-Gil, S. Rodriguez-Mora, J. A. Lopez, E. Calvo, G. Lopez-Campos, J. Alcami, et al. (2013)
J. Biol. Chem. 288, 7626-7644
   Abstract »    Full Text »    PDF »
Too much or too little, how much HDAC activity is good for you?.
P. Matthias (2013)
Blood 121, 1930-1931
   Full Text »    PDF »
Improving Insulin Sensitivity With HDAC Inhibitor.
J. Ye (2013)
Diabetes 62, 685-687
   Full Text »    PDF »
Identification of CRM1-dependent Nuclear Export Cargos Using Quantitative Mass Spectrometry.
K. Thakar, S. Karaca, S. A. Port, H. Urlaub, and R. H. Kehlenbach (2013)
Mol. Cell. Proteomics 12, 664-678
   Abstract »    Full Text »    PDF »
Distinct and Redundant Roles of the Two MYST Histone Acetyltransferases Esa1 and Sas2 in Cell Growth and Morphogenesis of Candida albicans.
X. Wang, P. Chang, J. Ding, and J. Chen (2013)
Eukaryot. Cell 12, 438-449
   Abstract »    Full Text »    PDF »
Histone Deacetylase 9 Promotes Angiogenesis by Targeting the Antiangiogenic MicroRNA-17-92 Cluster in Endothelial Cells.
D. Kaluza, J. Kroll, S. Gesierich, Y. Manavski, J.-N. Boeckel, C. Doebele, A. Zelent, L. Rossig, A. M. Zeiher, H. G. Augustin, et al. (2013)
Arterioscler Thromb Vasc Biol 33, 533-543
   Abstract »    Full Text »    PDF »
Circadian acetylome reveals regulation of mitochondrial metabolic pathways.
S. Masri, V. R. Patel, K. L. Eckel-Mahan, S. Peleg, I. Forne, A. G. Ladurner, P. Baldi, A. Imhof, and P. Sassone-Corsi (2013)
PNAS 110, 3339-3344
   Abstract »    Full Text »    PDF »
Protein acetylation links the circadian clock to mitochondrial function.
G. Rey and A. B. Reddy (2013)
PNAS 110, 3210-3211
   Full Text »    PDF »
Dephosphorylation at a Conserved SP Motif Governs cAMP Sensitivity and Nuclear Localization of Class IIa Histone Deacetylases.
D. R. Walkinshaw, R. Weist, L. Xiao, K. Yan, G.-W. Kim, and X.-J. Yang (2013)
J. Biol. Chem. 288, 5591-5605
   Abstract »    Full Text »    PDF »
Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation.
N. T. Snider, J. M. Leonard, R. Kwan, N. W. Griggs, L. Rui, and M. B. Omary (2013)
J. Cell Biol. 200, 241-247
   Abstract »    Full Text »    PDF »
A Role for Cytoskeletal Protein Acetylation in Modulating Myometrial Activity.
G. N. Europe-Finner, M. J. Taggart, and M. Karolczak-Bayatti (2013)
Reproductive Sciences 20, 175-181
   Abstract »    Full Text »    PDF »
SIRT3 Weighs Heavily in the Metabolic Balance: A New Role for SIRT3 in Metabolic Syndrome.
M. F. Green and M. D. Hirschey (2013)
J Gerontol A Biol Sci Med Sci 68, 105-107
   Abstract »    Full Text »    PDF »
Okazaki Fragment Metabolism.
L. Balakrishnan and R. A. Bambara (2013)
Cold Spring Harb Perspect Biol 5, a010173
   Abstract »    Full Text »    PDF »
Lamin A tail modification by SUMO1 is disrupted by familial partial lipodystrophy-causing mutations.
D. N. Simon, T. Domaradzki, W. A. Hofmann, and K. L. Wilson (2013)
Mol. Biol. Cell 24, 342-350
   Abstract »    Full Text »    PDF »
Posttranslational Modifications of the Retinoblastoma Tumor Suppressor Protein as Determinants of Function.
J. I. MacDonald and F. A. Dick (2013)
Genes & Cancer
   Abstract »    Full Text »    PDF »
Hdac6 regulates Tip60-p400 function in stem cells.
P. B. Chen, J.-H. Hung, T. L. Hickman, A. H. Coles, J. F. Carey, Z. Weng, F. Chu, and T. G. Fazzio (2013)
eLife Sci 2, e01557
   Abstract »    Full Text »    PDF »
PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins.
P. Minguez, I. Letunic, L. Parca, and P. Bork (2013)
Nucleic Acids Res. 41, D306-D311
   Abstract »    Full Text »    PDF »
Sumoylation of SAE2 C Terminus Regulates SAE Nuclear Localization.
K. Truong, T. D. Lee, B. Li, and Y. Chen (2012)
J. Biol. Chem. 287, 42611-42619
   Abstract »    Full Text »    PDF »
Mitochondrial Protein Acylation and Intermediary Metabolism: Regulation by Sirtuins and Implications for Metabolic Disease.
J. C. Newman, W. He, and E. Verdin (2012)
J. Biol. Chem. 287, 42436-42443
   Abstract »    Full Text »    PDF »
Sirtuin Catalysis and Regulation.
J. L. Feldman, K. E. Dittenhafer-Reed, and J. M. Denu (2012)
J. Biol. Chem. 287, 42419-42427
   Abstract »    Full Text »    PDF »
Human Family with Sequence Similarity 60 Member A (FAM60A) Protein: a New Subunit of the Sin3 Deacetylase Complex.
K. T. Smith, M. E. Sardiu, S. A. Martin-Brown, C. Seidel, A. Mushegian, R. Egidy, L. Florens, M. P. Washburn, and J. L. Workman (2012)
Mol. Cell. Proteomics 11, 1815-1828
   Abstract »    Full Text »    PDF »
Characterizing Ubiquitination Sites by Peptide-based Immunoaffinity Enrichment.
D. Bustos, C. E. Bakalarski, Y. Yang, J. Peng, and D. S. Kirkpatrick (2012)
Mol. Cell. Proteomics 11, 1529-1540
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882