Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 325 (5943): 995-998

Copyright © 2009 by the American Association for the Advancement of Science

An Expressed Fgf4 Retrogene Is Associated with Breed-Defining Chondrodysplasia in Domestic Dogs

Heidi G. Parker,1 Bridgett M. VonHoldt,2 Pascale Quignon,1 Elliott H. Margulies,3 Stephanie Shao,1 Dana S. Mosher,1 Tyrone C. Spady,1 Abdel Elkahloun,1 Michele Cargill,4,* Paul G. Jones,5 Cheryl L. Maslen,6 Gregory M. Acland,7,8 Nathan B. Sutter,8 Keiichi Kuroki,9 Carlos D. Bustamante,10 Robert K. Wayne,2 Elaine A. Ostrander1,{dagger}

Abstract: Retrotransposition of processed mRNAs is a common source of novel sequence acquired during the evolution of genomes. Although the vast majority of retroposed gene copies, or retrogenes, rapidly accumulate debilitating mutations that disrupt the reading frame, a small percentage become new genes that encode functional proteins. By using a multibreed association analysis in the domestic dog, we demonstrate that expression of a recently acquired retrogene encoding fibroblast growth factor 4 (fgf4) is strongly associated with chondrodysplasia, a short-legged phenotype that defines at least 19 dog breeds including dachshund, corgi, and basset hound. These results illustrate the important role of a single evolutionary event in constraining and directing phenotypic diversity in the domestic dog.

1 Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
2 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.
3 Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
4 Affymetrix Corporation, 3420 Central Expressway, Santa Clara, CA 95051, USA.
5 The WALTHAM Centre for Pet Nutrition, Waltham on the Wolds, Leicestershire LE14 4RT, UK.
6 Division of Cardiovascular Medicine, Oregon Health and Science University, Portland, OR 97239, USA.
7 Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853, USA.
8 College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
9 Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO 65211, USA.
10 Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA.

* Present address: Genetics Navigenics, Foster City, CA 94404, USA.

{dagger} To whom correspondence should be addressed. E-mail: eostrand{at}mail.nih.gov


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
IQCB1 and PDE6B Mutations Cause Similar Early Onset Retinal Degenerations in Two Closely Related Terrier Dog Breeds.
O. Goldstein, J. G. Mezey, P. A. Schweitzer, A. R. Boyko, C. Gao, C. D. Bustamante, J. A. Jordan, G. D. Aguirre, and G. M. Acland (2013)
Invest. Ophthalmol. Vis. Sci. 54, 7005-7019
   Abstract »    Full Text »    PDF »
High Occurrence of Functional New Chimeric Genes in Survey of Rice Chromosome 3 Short Arm Genome Sequences.
C. Zhang, J. Wang, N. C. Marowsky, M. Long, R. A. Wing, and C. Fan (2013)
Genome Biol Evol 5, 1038-1048
   Abstract »    Full Text »    PDF »
The 2013 Genetics Society of America Medal: Elaine A. Ostrander.
J. Schimenti and M. Halpern (2013)
Genetics 194, 5-7
   Full Text »    PDF »
"Orphan" Retrogenes in the Human Genome.
J. Ciomborowska, W. Rosikiewicz, D. Szklarczyk, W. Makalowski, and I. Makalowska (2013)
Mol. Biol. Evol. 30, 384-396
   Abstract »    Full Text »    PDF »
Rethinking dog domestication by integrating genetics, archeology, and biogeography.
G. Larson, E. K. Karlsson, A. Perri, M. T. Webster, S. Y. W. Ho, J. Peters, P. W. Stahl, P. J. Piper, F. Lingaas, M. Fredholm, et al. (2012)
PNAS 109, 8878-8883
   Abstract »    Full Text »    PDF »
Deciphering the genetic basis of animal domestication.
P. Wiener and S. Wilkinson (2011)
Proc R Soc B 278, 3161-3170
   Abstract »    Full Text »    PDF »
Carnivore-Specific SINEs (Can-SINEs): Distribution, Evolution, and Genomic Impact.
K. B. Walters-Conte, D. L. E. Johnson, M. W. Allard, and J. Pecon-Slattery (2011)
J. Hered. 102, S2-S10
   Abstract »    Full Text »    PDF »
The Genetic Structure of Domestic Rabbits.
M. Carneiro, S. Afonso, A. Geraldes, H. Garreau, G. Bolet, S. Boucher, A. Tircazes, G. Queney, M. W. Nachman, and N. Ferrand (2011)
Mol. Biol. Evol. 28, 1801-1816
   Abstract »    Full Text »    PDF »
Diversity in Copy Number and Structure of a Silkworm Morphogenetic Gene as a Result of Domestication.
T. Sakudoh, T. Nakashima, Y. Kuroki, A. Fujiyama, Y. Kohara, N. Honda, H. Fujimoto, T. Shimada, M. Nakagaki, Y. Banno, et al. (2011)
Genetics 187, 965-976
   Abstract »    Full Text »    PDF »
Origins, evolution, and phenotypic impact of new genes.
H. Kaessmann (2010)
Genome Res. 20, 1313-1326
   Abstract »    Full Text »    PDF »
Nothing in Evolution Makes Sense Except in the Light of DNA.
S. T. Kalinowski, M. J. Leonard, and T. M. Andrews (2010)
CBE Life Sci Educ 9, 87-97
   Abstract »    Full Text »    PDF »
Tracking footprints of artificial selection in the dog genome.
J. M. Akey, A. L. Ruhe, D. T. Akey, A. K. Wong, C. F. Connelly, J. Madeoy, T. J. Nicholas, and M. W. Neff (2010)
PNAS 107, 1160-1165
   Abstract »    Full Text »    PDF »
Leading the way: canine models of genomics and disease.
A. L. Shearin and E. A. Ostrander (2010)
Dis. Model. Mech. 3, 27-34
   Abstract »    Full Text »    PDF »
More Than Just a Copy.
H. Kaessmann (2009)
Science 325, 958-959
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882