Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 325 (5945): 1240-1243

Copyright © 2009 by the American Association for the Advancement of Science

Poly(ADP-ribose)–Dependent Regulation of DNA Repair by the Chromatin Remodeling Enzyme ALC1

Dragana Ahel,1 Zuzana Horejsí,1,* Nicola Wiechens,2,* Sophie E. Polo,3,* Elisa Garcia-Wilson,2 Ivan Ahel,4,5 Helen Flynn,6 Mark Skehel,6 Stephen C. West,5 Stephen P. Jackson,3 Tom Owen-Hughes,2 Simon J. Boulton1,{dagger}

Abstract: Posttranslational modifications play key roles in regulating chromatin plasticity. Although various chromatin-remodeling enzymes have been described that respond to specific histone modifications, little is known about the role of poly[adenosine 5'-diphosphate (ADP)–ribose] in chromatin remodeling. Here, we identify a chromatin-remodeling enzyme, ALC1 (Amplified in Liver Cancer 1, also known as CHD1L), that interacts with poly(ADP-ribose) and catalyzes PARP1-stimulated nucleosome sliding. Our results define ALC1 as a DNA damage–response protein whose role in this process is sustained by its association with known DNA repair factors and its rapid poly(ADP-ribose)–dependent recruitment to DNA damage sites. Furthermore, we show that depletion or overexpression of ALC1 results in sensitivity to DNA-damaging agents. Collectively, these results provide new insights into the mechanisms by which poly(ADP-ribose) regulates DNA repair.

1 DNA Damage Response Laboratory, Clare Hall, London Research Institute, South Mimms EN6 3LD, UK.
2 Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
3 The Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
4 Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK.
5 Genetic Recombination Laboratory, Clare Hall, London Research Institute, South Mimms EN6 3LD, UK.
6 Protein Analysis and Proteomics Laboratory, Clare Hall, London Research Institute, South Mimms EN6 3LD, UK.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: Simon.boulton{at}

Tripartite Motif-containing 33 (TRIM33) Protein Functions in the Poly(ADP-ribose) Polymerase (PARP)-dependent DNA Damage Response through Interaction with Amplified in Liver Cancer 1 (ALC1) Protein.
A. Kulkarni, J. Oza, M. Yao, H. Sohail, V. Ginjala, A. Tomas-Loba, Z. Horejsi, A. R. Tan, S. J. Boulton, and S. Ganesan (2013)
J. Biol. Chem. 288, 32357-32369
   Abstract »    Full Text »    PDF »
Nonhomologous end-joining promotes resistance to DNA damage in the absence of an ADP-ribosyltransferase that signals DNA single strand breaks.
C. A.-M. Couto, D.-W. Hsu, R. Teo, A. Rakhimova, S. Lempidaki, C. J. Pears, and N. D. Lakin (2013)
J. Cell Sci. 126, 3452-3461
   Abstract »    Full Text »    PDF »
Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease.
R. Sharifi, R. Morra, C. Denise Appel, M. Tallis, B. Chioza, G. Jankevicius, M. A. Simpson, I. Matic, E. Ozkan, B. Golia, et al. (2013)
EMBO J. 32, 1225-1237
   Abstract »    Full Text »    PDF »
BAL1 and Its Partner E3 Ligase, BBAP, Link Poly(ADP-Ribose) Activation, Ubiquitylation, and Double-Strand DNA Repair Independent of ATM, MDC1, and RNF8.
Q. Yan, R. Xu, L. Zhu, X. Cheng, Z. Wang, J. Manis, and M. A. Shipp (2013)
Mol. Cell. Biol. 33, 845-857
   Abstract »    Full Text »    PDF »
Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling.
G. Smeenk, W. W. Wiegant, J. A. Marteijn, M. S. Luijsterburg, N. Sroczynski, T. Costelloe, R. J. Romeijn, A. Pastink, N. Mailand, W. Vermeulen, et al. (2013)
J. Cell Sci. 126, 889-903
   Abstract »    Full Text »    PDF »
The chromatin remodeling factor Chd1l is required in the preimplantation embryo.
A. C. Snider, D. Leong, Q. T. Wang, J. Wysocka, M. W. M. Yao, and M. P. Scott (2013)
Biology Open 2, 121-131
   Abstract »    Full Text »    PDF »
Decoupling nucleosome recognition from DNA binding dramatically alters the properties of the Chd1 chromatin remodeler.
A. Patel, S. Chakravarthy, S. Morrone, I. M. Nodelman, J. N. McKnight, and G. D. Bowman (2013)
Nucleic Acids Res. 41, 1637-1648
   Abstract »    Full Text »    PDF »
Poly(ADP-ribose) polymerase 1 regulates nuclear reprogramming and promotes iPSC generation without c-Myc.
S.-H. Chiou, B.-H. Jiang, Y.-L. Yu, S.-J. Chou, P.-H. Tsai, W.-C. Chang, L.-K. Chen, L.-H. Chen, Y. Chien, and G.-Y. Chiou (2013)
J. Exp. Med. 210, 85-98
   Abstract »    Full Text »    PDF »
The chromatin remodeler p400 ATPase facilitates Rad51-mediated repair of DNA double-strand breaks.
C. Courilleau, C. Chailleux, A. Jauneau, F. Grimal, S. Briois, E. Boutet-Robinet, F. Boudsocq, D. Trouche, and Y. Canitrot (2012)
J. Cell Biol. 199, 1067-1081
   Abstract »    Full Text »    PDF »
Activation of the SNF2 Family ATPase ALC1 by Poly(ADP-ribose) in a Stable ALC1{middle dot}PARP1{middle dot}Nucleosome Intermediate.
A. J. Gottschalk, R. D. Trivedi, J. W. Conaway, and R. C. Conaway (2012)
J. Biol. Chem. 287, 43527-43532
   Abstract »    Full Text »    PDF »
Poly(ADP-ribose) Contributes to an Association between Poly(ADP-ribose) Polymerase-1 and Xeroderma Pigmentosum Complementation Group A in Nucleotide Excision Repair.
B. S. King, K. L. Cooper, K. J. Liu, and L. G. Hudson (2012)
J. Biol. Chem. 287, 39824-39833
   Abstract »    Full Text »    PDF »
The SNF2 family ATPase LSH promotes phosphorylation of H2AX and efficient repair of DNA double-strand breaks in mammalian cells.
J. Burrage, A. Termanis, A. Geissner, K. Myant, K. Gordon, and I. Stancheva (2012)
J. Cell Sci. 125, 5524-5534
   Abstract »    Full Text »    PDF »
PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks.
J. Krietsch, M.-C. Caron, J.-P. Gagne, C. Ethier, J. Vignard, M. Vincent, M. Rouleau, M. J. Hendzel, G. G. Poirier, and J.-Y. Masson (2012)
Nucleic Acids Res. 40, 10287-10301
   Abstract »    Full Text »    PDF »
PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1.
A. Pines, M. G. Vrouwe, J. A. Marteijn, D. Typas, M. S. Luijsterburg, M. Cansoy, P. Hensbergen, A. Deelder, A. de Groot, S. Matsumoto, et al. (2012)
J. Cell Biol. 199, 235-249
   Abstract »    Full Text »    PDF »
Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress.
J.-P. Gagne, E. Pic, M. Isabelle, J. Krietsch, C. Ethier, E. Paquet, I. Kelly, M. Boutin, K.-M. Moon, L. J. Foster, et al. (2012)
Nucleic Acids Res. 40, 7788-7805
   Abstract »    Full Text »    PDF »
PARPs and the DNA damage response.
F. G. Sousa, R. Matuo, D. G. Soares, A. E. Escargueil, J. A. P. Henriques, A. K. Larsen, and J. Saffi (2012)
Carcinogenesis 33, 1433-1440
   Abstract »    Full Text »    PDF »
ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response.
R. Weston, H. Peeters, and D. Ahel (2012)
Genes & Dev. 26, 1558-1572
   Abstract »    Full Text »    PDF »
Histone ADP-Ribosylation Facilitates Gene Transcription by Directly Remodeling Nucleosomes.
R. Martinez-Zamudio and H. C. Ha (2012)
Mol. Cell. Biol. 32, 2490-2502
   Abstract »    Full Text »    PDF »
CHD1L: a new candidate gene for congenital anomalies of the kidneys and urinary tract (CAKUT).
A. Brockschmidt, B. Chung, S. Weber, D.-C. Fischer, M. Kolatsi-Joannou, L. Christ, A. Heimbach, D. Shtiza, G. Klaus, G. D. Simonetti, et al. (2012)
Nephrol. Dial. Transplant. 27, 2355-2364
   Abstract »    Full Text »    PDF »
A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure.
M. S. Luijsterburg, K. Acs, L. Ackermann, W. W. Wiegant, S. Bekker-Jensen, D. H. Larsen, K. K. Khanna, H. van Attikum, N. Mailand, and N. P. Dantuma (2012)
EMBO J. 31, 2511-2527
   Abstract »    Full Text »    PDF »
DDB2 promotes chromatin decondensation at UV-induced DNA damage.
M. S. Luijsterburg, M. Lindh, K. Acs, M. G. Vrouwe, A. Pines, H. van Attikum, L. H. Mullenders, and N. P. Dantuma (2012)
J. Cell Biol. 197, 267-281
   Abstract »    Full Text »    PDF »
Helical Repeat Structure of Apoptosis Inhibitor 5 Reveals Protein-Protein Interaction Modules.
B.-G. Han, K. H. Kim, S. J. Lee, K.-C. Jeong, J.-W. Cho, K. H. Noh, T. W. Kim, S.-J. Kim, H.-J. Yoon, S. W. Suh, et al. (2012)
J. Biol. Chem. 287, 10727-10737
   Abstract »    Full Text »    PDF »
The potential for poly (ADP-ribose) polymerase inhibitors in cancer therapy.
M. Javle and N. J. Curtin (2011)
Therapeutic Advances in Medical Oncology 3, 257-267
   Abstract »    PDF »
QKI-Mediated Alternative Splicing of the Histone Variant MacroH2A1 Regulates Cancer Cell Proliferation.
L. Novikov, J. W. Park, H. Chen, H. Klerman, A. S. Jalloh, and M. J. Gamble (2011)
Mol. Cell. Biol. 31, 4244-4255
   Abstract »    Full Text »    PDF »
Orphan Macrodomain Protein (Human C6orf130) Is an O-Acyl-ADP-ribose Deacylase: SOLUTION STRUCTURE AND CATALYTIC PROPERTIES.
F. C. Peterson, D. Chen, B. L. Lytle, M. N. Rossi, I. Ahel, J. M. Denu, and B. F. Volkman (2011)
J. Biol. Chem. 286, 35955-35965
   Abstract »    Full Text »    PDF »
Role for hACF1 in the G2/M damage checkpoint.
S. Sanchez-Molina, O. Mortusewicz, B. Bieber, S. Auer, M. Eckey, H. Leonhardt, A. A. Friedl, and P. B. Becker (2011)
Nucleic Acids Res. 39, 8445-8456
   Abstract »    Full Text »    PDF »
SIRT6 Promotes DNA Repair Under Stress by Activating PARP1.
Z. Mao, C. Hine, X. Tian, M. Van Meter, M. Au, A. Vaidya, A. Seluanov, and V. Gorbunova (2011)
Science 332, 1443-1446
   Abstract »    Full Text »    PDF »
Identification of Macrodomain Proteins as Novel O-Acetyl-ADP-ribose Deacetylases.
D. Chen, M. Vollmar, M. N. Rossi, C. Phillips, R. Kraehenbuehl, D. Slade, P. V. Mehrotra, F. von Delft, S. K. Crosthwaite, O. Gileadi, et al. (2011)
J. Biol. Chem. 286, 13261-13271
   Abstract »    Full Text »    PDF »
Poly(ADP-Ribose) (PAR) Binding to Apoptosis-Inducing Factor Is Critical for PAR Polymerase-1-Dependent Cell Death (Parthanatos).
Y. Wang, N. S. Kim, J.-F. Haince, H. C. Kang, K. K. David, S. A. Andrabi, G. G. Poirier, V. L. Dawson, and T. M. Dawson (2011)
Science Signaling 4, ra20
   Abstract »    Full Text »    PDF »
Replication stress induces 53BP1-containing OPT domains in G1 cells.
J. A. Harrigan, R. Belotserkovskaya, J. Coates, D. S. Dimitrova, S. E. Polo, C. R. Bradshaw, P. Fraser, and S. P. Jackson (2011)
J. Cell Biol. 193, 97-108
   Abstract »    Full Text »    PDF »
Crystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA: STRUCTURAL AND FUNCTIONAL INSIGHTS INTO DNA-DEPENDENT PARP-1 ACTIVITY.
M.-F. Langelier, J. L. Planck, S. Roy, and J. M. Pascal (2011)
J. Biol. Chem. 286, 10690-10701
   Abstract »    Full Text »    PDF »
Double-stranded DNA Binding Domain of Poly(ADP-ribose) Polymerase-1 and Molecular Insight into the Regulation of Its Activity.
O. Huambachano, F. Herrera, A. Rancourt, and M. S. Satoh (2011)
J. Biol. Chem. 286, 7149-7160
   Abstract »    Full Text »    PDF »
Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications.
S. E. Polo and S. P. Jackson (2011)
Genes & Dev. 25, 409-433
   Abstract »    Full Text »    PDF »
BRCA1, PARP, and 53BP1: conditional synthetic lethality and synthetic viability.
A. Aly and S. Ganesan (2011)
J Mol Cell Biol 3, 66-74
   Abstract »    Full Text »    PDF »
hPuf-A/KIAA0020 Modulates PARP-1 Cleavage upon Genotoxic Stress.
H.-Y. Chang, C.-C. Fan, P.-C. Chu, B.-E. Hong, H. J. Lee, and M.-S. Chang (2011)
Cancer Res. 71, 1126-1134
   Abstract »    Full Text »    PDF »
A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage.
D. M. Chou, B. Adamson, N. E. Dephoure, X. Tan, A. C. Nottke, K. E. Hurov, S. P. Gygi, M. P. Colaiacovo, and S. J. Elledge (2010)
PNAS 107, 18475-18480
   Abstract »    Full Text »    PDF »
PARP1 ADP-ribosylates lysine residues of the core histone tails.
S. Messner, M. Altmeyer, H. Zhao, A. Pozivil, B. Roschitzki, P. Gehrig, D. Rutishauser, D. Huang, A. Caflisch, and M. O. Hottiger (2010)
Nucleic Acids Res. 38, 6350-6362
   Abstract »    Full Text »    PDF »
Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4.
S. E. Polo, A. Kaidi, L. Baskcomb, Y. Galanty, and S. P. Jackson (2010)
EMBO J. 29, 3130-3139
   Abstract »    Full Text »    PDF »
The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage.
G. Smeenk, W. W. Wiegant, H. Vrolijk, A. P. Solari, A. Pastink, and H. van Attikum (2010)
J. Cell Biol. 190, 741-749
   Abstract »    Full Text »    PDF »
The Zn3 Domain of Human Poly(ADP-ribose) Polymerase-1 (PARP-1) Functions in Both DNA-dependent Poly(ADP-ribose) Synthesis Activity and Chromatin Compaction.
M.-F. Langelier, D. D. Ruhl, J. L. Planck, W. L. Kraus, and J. M. Pascal (2010)
J. Biol. Chem. 285, 18877-18887
   Abstract »    Full Text »    PDF »
Differential Requirement for H2AX and 53BP1 in Organismal Development and Genome Maintenance in the Absence of Poly(ADP)ribosyl Polymerase 1.
B. Orsburn, B. Escudero, M. Prakash, S. Gesheva, G. Liu, D. L. Huso, and S. Franco (2010)
Mol. Cell. Biol. 30, 2341-2352
   Abstract »    Full Text »    PDF »
The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing.
M. J. Gamble, K. M. Frizzell, C. Yang, R. Krishnakumar, and W. L. Kraus (2010)
Genes & Dev. 24, 21-32
   Abstract »    Full Text »    PDF »
Disruption of Poly(ADP-ribosyl)ation Mechanisms Alters Responses of Arabidopsis to Biotic Stress.
L. Adams-Phillips, A. G. Briggs, and A. F. Bent (2010)
Plant Physiology 152, 267-280
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882