Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 325 (5947): 1555-1559

Copyright © 2009 by the American Association for the Advancement of Science

Glucose Deprivation Contributes to the Development of KRAS Pathway Mutations in Tumor Cells

Jihye Yun,1 Carlo Rago,1 Ian Cheong,1 Ray Pagliarini,1,* Philipp Angenendt,1 Harith Rajagopalan,1,{dagger} Kerstin Schmidt,1 James K. V. Willson,2 Sandy Markowitz,3 Shibin Zhou,1 Luis A. Diaz, Jr,1 Victor E. Velculescu,1 Christoph Lengauer,1,{ddagger} Kenneth W. Kinzler,1 Bert Vogelstein,1,§ Nickolas Papadopoulos1

Abstract: Tumor progression is driven by genetic mutations, but little is known about the environmental conditions that select for these mutations. Studying the transcriptomes of paired colorectal cancer cell lines that differed only in the mutational status of their KRAS or BRAF genes, we found that GLUT1, encoding glucose transporter-1, was one of three genes consistently up-regulated in cells with KRAS or BRAF mutations. The mutant cells exhibited enhanced glucose uptake and glycolysis and survived in low-glucose conditions, phenotypes that all required GLUT1 expression. In contrast, when cells with wild-type KRAS alleles were subjected to a low-glucose environment, very few cells survived. Most surviving cells expressed high levels of GLUT1, and 4% of these survivors had acquired KRAS mutations not present in their parents. The glycolysis inhibitor 3-bromopyruvate preferentially suppressed the growth of cells with KRAS or BRAF mutations. Together, these data suggest that glucose deprivation can drive the acquisition of KRAS pathway mutations in human tumors.

1 The Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute at the Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.
2 Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
3 Department of Medicine and Ireland Cancer Center, Case Western Reserve University and Case Medical Center of University Hospitals of Cleveland and Howard Hughes Medical Institute, Cleveland, OH 44106, USA.

* Present address: Novartis Institute for Biomedical Research, Cambridge, MA 02139, USA.

{dagger} Present address: Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA.

{ddagger} Present address: Sanofi-Aventis, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France.

§ To whom correspondence should be addressed. E-mail: vogelbe{at}

The complex landscape of pancreatic cancer metabolism.
C. M. Sousa and A. C. Kimmelman (2014)
Carcinogenesis 35, 1441-1450
   Abstract »    Full Text »    PDF »
Cross-species analysis of genetically engineered mouse models of MAPK-driven colorectal cancer identifies hallmarks of the human disease.
P. J. Belmont, E. Budinska, P. Jiang, M. J. Sinnamon, E. Coffee, J. Roper, T. Xie, P. A. Rejto, S. Derkits, O. J. Sansom, et al. (2014)
Dis. Model. Mech. 7, 613-623
   Abstract »    Full Text »    PDF »
KRAS Mutation Status Is Associated with Enhanced Dependency on Folate Metabolism Pathways in Non-Small Cell Lung Cancer Cells.
D. M. Moran, P. B. Trusk, K. Pry, K. Paz, D. Sidransky, and S. S. Bacus (2014)
Mol. Cancer Ther. 13, 1611-1624
   Abstract »    Full Text »    PDF »
Lack of Association between KRAS Mutations and 18F-FDG PET/CT in Caucasian Metastatic Colorectal Cancer Patients.
Anticancer Res 34, 2571-2579
   Abstract »    Full Text »    PDF »
A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities.
F. J. Vizeacoumar, R. Arnold, F. S. Vizeacoumar, M. Chandrashekhar, A. Buzina, J. T. F. Young, J. H. M. Kwan, A. Sayad, P. Mero, S. Lawo, et al. (2014)
Mol Syst Biol 9, 696
   Abstract »    Full Text »    PDF »
Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death.
N. A. Graham, M. Tahmasian, B. Kohli, E. Komisopoulou, M. Zhu, I. Vivanco, M. A. Teitell, H. Wu, A. Ribas, R. S. Lo, et al. (2014)
Mol Syst Biol 8, 589
   Abstract »    Full Text »    PDF »
The glucose-deprivation network counteracts lapatinib-induced toxicity in resistant ErbB2-positive breast cancer cells.
K. Komurov, J.-T. Tseng, M. Muller, E. G. Seviour, T. J. Moss, L. Yang, D. Nagrath, and P. T. Ram (2014)
Mol Syst Biol 8, 596
   Abstract »    Full Text »    PDF »
Metabolic rewiring drives resistance to targeted cancer therapy.
J. W. Locasale (2014)
Mol Syst Biol 8, 597
   Full Text »    PDF »
Response of BRAF-Mutant Melanoma to BRAF Inhibition Is Mediated by a Network of Transcriptional Regulators of Glycolysis.
T. J. Parmenter, M. Kleinschmidt, K. M. Kinross, S. T. Bond, J. Li, M. R. Kaadige, A. Rao, K. E. Sheppard, W. Hugo, G. M. Pupo, et al. (2014)
Cancer Discovery 4, 423-433
   Abstract »    Full Text »    PDF »
Antitumor Effects in Gastrointestinal Stromal Tumors Using Photodynamic Therapy with a Novel Glucose-Conjugated Chlorin.
M. Tanaka, H. Kataoka, S. Yano, H. Ohi, K. Moriwaki, H. Akashi, T. Taguchi, N. Hayashi, S. Hamano, Y. Mori, et al. (2014)
Mol. Cancer Ther. 13, 767-775
   Abstract »    Full Text »    PDF »
Role of Oncogenic K-Ras in Cancer Stem Cell Activation by Aberrant Wnt/{beta}-Catenin Signaling.
B.-S. Moon, W.-J. Jeong, J. Park, T. I. Kim, D. S. Min, and K.-Y. Choi (2014)
J Natl Cancer Inst 106, djt373
   Abstract »    Full Text »    PDF »
Counseling Patients on Cancer Diets: A Review of the Literature and Recommendations for Clinical Practice.
Anticancer Res 34, 39-48
   Abstract »    Full Text »    PDF »
Arginine Deiminase Resistance in Melanoma Cells Is Associated with Metabolic Reprogramming, Glucose Dependence, and Glutamine Addiction.
Y. Long, W.-B. Tsai, M. Wangpaichitr, T. Tsukamoto, N. Savaraj, L. G. Feun, and M. T. Kuo (2013)
Mol. Cancer Ther. 12, 2581-2590
   Abstract »    Full Text »    PDF »
Exploiting the bad eating habits of Ras-driven cancers.
E. White (2013)
Genes & Dev. 27, 2065-2071
   Abstract »    Full Text »    PDF »
MEK1/2 Inhibition Decreases Lactate in BRAF-Driven Human Cancer Cells.
M. Falck Miniotis, V. Arunan, T. R. Eykyn, R. Marais, P. Workman, M. O. Leach, and M. Beloueche-Babari (2013)
Cancer Res. 73, 4039-4049
   Abstract »    Full Text »    PDF »
Single Copies of Mutant KRAS and Mutant PIK3CA Cooperate in Immortalized Human Epithelial Cells to Induce Tumor Formation.
G. M. Wang, H. Y. Wong, H. Konishi, B. G. Blair, A. M. Abukhdeir, J. P. Gustin, D. M. Rosen, S. R. Denmeade, Z. Rasheed, W. Matsui, et al. (2013)
Cancer Res. 73, 3248-3261
   Abstract »    Full Text »    PDF »
Concomitant BRAF and PI3K/mTOR Blockade Is Required for Effective Treatment of BRAFV600E Colorectal Cancer.
E. M. Coffee, A. C. Faber, J. Roper, M. J. Sinnamon, G. Goel, L. Keung, W. V. Wang, L. Vecchione, V. de Vriendt, B. J. Weinstein, et al. (2013)
Clin. Cancer Res. 19, 2688-2698
   Abstract »    Full Text »    PDF »
Cancer Genome Landscapes.
B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. A. Diaz Jr., and K. W. Kinzler (2013)
Science 339, 1546-1558
   Abstract »    Full Text »    PDF »
Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma.
F. Guillaumond, J. Leca, O. Olivares, M.-N. Lavaut, N. Vidal, P. Berthezene, N. J. Dusetti, C. Loncle, E. Calvo, O. Turrini, et al. (2013)
PNAS 110, 3919-3924
   Abstract »    Full Text »    PDF »
Identification of Mutant K-Ras-dependent Phenotypes Using a Panel of Isogenic Cell Lines.
S. Vartanian, C. Bentley, M. J. Brauer, L. Li, S. Shirasawa, T. Sasazuki, J.-S. Kim, P. Haverty, E. Stawiski, Z. Modrusan, et al. (2013)
J. Biol. Chem. 288, 2403-2413
   Abstract »    Full Text »    PDF »
Colon Cancer Recurrence: Insights From the Interface Between Epidemiology, Laboratory Science, and Clinical Medicine.
N. J. Meropol and N. A. Berger (2012)
J Natl Cancer Inst 104, 1697-1698
   Full Text »    PDF »
Molecular Pathways: Regulation of Metabolism by RB.
B. F. Clem and J. Chesney (2012)
Clin. Cancer Res. 18, 6096-6100
   Abstract »    Full Text »    PDF »
Glutamine Deprivation Enhances Antitumor Activity of 3-Bromopyruvate through the Stabilization of Monocarboxylate Transporter-1.
S. Cardaci, S. Rizza, G. Filomeni, R. Bernardini, F. Bertocchi, M. Mattei, M. Paci, G. Rotilio, and M. R. Ciriolo (2012)
Cancer Res. 72, 4526-4536
   Abstract »    Full Text »    PDF »
Chronic Autophagy Is a Cellular Adaptation to Tumor Acidic pH Microenvironments.
J. W. Wojtkowiak, J. M. Rothberg, V. Kumar, K. J. Schramm, E. Haller, J. B. Proemsey, M. C. Lloyd, B. F. Sloane, and R. J. Gillies (2012)
Cancer Res. 72, 3938-3947
   Abstract »    Full Text »    PDF »
Annual fasting plasma glucose variation increases risk of cancer incidence and mortality in patients with type 2 diabetes: the Taichung Diabetes Study.
C.-C. Lin, C.-I. Li, C.-S. Liu, W.-Y. Lin, C.-C. Chen, S.-Y. Yang, C.-C. Lee, and T.-C. Li (2012)
Endocr. Relat. Cancer 19, 473-483
   Abstract »    Full Text »    PDF »
Early FDG/PET Scanning as a Pharmacodynamic Marker of Anti-EGFR Antibody Activity in Colorectal Cancer.
G. W. Krystal, E. Alesi, and J. L. Tatum (2012)
Mol. Cancer Ther. 11, 1385-1388
   Abstract »    Full Text »    PDF »
Modulation of Microenvironment Acidity Reverses Anergy in Human and Murine Tumor-Infiltrating T Lymphocytes.
A. Calcinotto, P. Filipazzi, M. Grioni, M. Iero, A. De Milito, A. Ricupito, A. Cova, R. Canese, E. Jachetti, M. Rossetti, et al. (2012)
Cancer Res. 72, 2746-2756
   Abstract »    Full Text »    PDF »
A metabolic phenotyping approach to understanding relationships between metabolic syndrome and breast tumour responses to chemotherapy.
J. Stebbing, A. Sharma, B. North, T. J. Athersuch, A. Zebrowski, D. Pchejetski, R. C. Coombes, J. K. Nicholson, and H. C. Keun (2012)
Ann. Onc. 23, 860-866
   Abstract »    Full Text »    PDF »
Relationship between 18F-Fluorodeoxyglucose Accumulation and KRAS/BRAF Mutations in Colorectal Cancer.
K. Kawada, Y. Nakamoto, M. Kawada, K. Hida, T. Matsumoto, T. Murakami, S. Hasegawa, K. Togashi, and Y. Sakai (2012)
Clin. Cancer Res. 18, 1696-1703
   Abstract »    Full Text »    PDF »
Functional Interaction between Responses to Lactic Acidosis and Hypoxia Regulates Genomic Transcriptional Outputs.
X. Tang, J. E. Lucas, J. L.-Y. Chen, G. LaMonte, J. Wu, M. C. Wang, C. Koumenis, and J.-T. Chi (2012)
Cancer Res. 72, 491-502
   Abstract »    Full Text »    PDF »
IKK{beta} and NF-{kappa}B Transcription Govern Lymphoma Cell Survival through AKT-Induced Plasma Membrane Trafficking of GLUT1.
T. G. Sommermann, K. O'Neill, D. R. Plas, and E. Cahir-McFarland (2011)
Cancer Res. 71, 7291-7300
   Abstract »    Full Text »    PDF »
Curing "Incurable" Cancer.
J. D. Watson (2011)
Cancer Discovery 1, 477-480
   Abstract »    Full Text »    PDF »
Colon tumour cells increase PGE2 by regulating COX-2 and 15-PGDH to promote survival during the microenvironmental stress of glucose deprivation.
H. R. Roberts, H. J. M. Smartt, A. Greenhough, A. E. Moore, A. C. Williams, and C. Paraskeva (2011)
Carcinogenesis 32, 1741-1747
   Abstract »    Full Text »    PDF »
Diabetes, diabetes therapies and cancer: what's the link?.
J. Seewoodhary and S. C. Bain (2011)
The British Journal of Diabetes & Vascular Disease 11, 235-238
   Abstract »    PDF »
Kinase Suppressor of Ras 1 (KSR1) Regulates PGC1{alpha} and Estrogen-Related Receptor {alpha} To Promote Oncogenic Ras-Dependent Anchorage-Independent Growth.
K. W. Fisher, B. Das, R. L. Kortum, O. V. Chaika, and R. E. Lewis (2011)
Mol. Cell. Biol. 31, 2453-2461
   Abstract »    Full Text »    PDF »
A {beta}-Camera Integrated with a Microfluidic Chip for Radioassays Based on Real-Time Imaging of Glycolysis in Small Cell Populations.
N. T. Vu, Z. T. F. Yu, B. Comin-Anduix, J. N. Sondergaard, R. W. Silverman, C. Y. N. Chang, A. Ribas, H.-R. Tseng, and A. F. Chatziioannou (2011)
J. Nucl. Med. 52, 815-821
   Abstract »    Full Text »    PDF »
Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth.
Q. Sun, X. Chen, J. Ma, H. Peng, F. Wang, X. Zha, Y. Wang, Y. Jing, H. Yang, R. Chen, et al. (2011)
PNAS 108, 4129-4134
   Abstract »    Full Text »    PDF »
Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome.
Z. J. Reitman, G. Jin, E. D. Karoly, I. Spasojevic, J. Yang, K. W. Kinzler, Y. He, D. D. Bigner, B. Vogelstein, and H. Yan (2011)
PNAS 108, 3270-3275
   Abstract »    Full Text »    PDF »
MEK1/2 Inhibitors AS703026 and AZD6244 May Be Potential Therapies for KRAS Mutated Colorectal Cancer That Is Resistant to EGFR Monoclonal Antibody Therapy.
J. Yoon, K.-H. Koo, and K.-Y. Choi (2011)
Cancer Res. 71, 445-453
   Abstract »    Full Text »    PDF »
DNA Damage-Induced Modulation of GLUT3 Expression Is Mediated through p53-Independent Extracellular Signal-Regulated Kinase Signaling in HeLa Cells.
M. Watanabe, H. Naraba, T. Sakyo, and T. Kitagawa (2010)
Mol. Cancer Res. 8, 1547-1557
   Abstract »    Full Text »    PDF »
Balancing biosynthesis and bioenergetics: metabolic programs in oncogenesis.
J. F. Barger and D. R. Plas (2010)
Endocr. Relat. Cancer 17, R287-R304
   Abstract »    Full Text »    PDF »
Diabetes and Cancer: A consensus report.
E. Giovannucci, D. M. Harlan, M. C. Archer, R. M. Bergenstal, S. M. Gapstur, L. A. Habel, M. Pollak, J. G. Regensteiner, and D. Yee (2010)
Diabetes Care 33, 1674-1685
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882