Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 325 (5948): 1682-1686

Copyright © 2009 by the American Association for the Advancement of Science

Global Analysis of Cdk1 Substrate Phosphorylation Sites Provides Insights into Evolution

Liam J. Holt,1,* Brian B. Tuch,2,* Judit Villén,3,* Alexander D. Johnson,2 Steven P. Gygi,3,{dagger} David O. Morgan1,{dagger}

Abstract: To explore the mechanisms and evolution of cell-cycle control, we analyzed the position and conservation of large numbers of phosphorylation sites for the cyclin-dependent kinase Cdk1 in the budding yeast Saccharomyces cerevisiae. We combined specific chemical inhibition of Cdk1 with quantitative mass spectrometry to identify the positions of 547 phosphorylation sites on 308 Cdk1 substrates in vivo. Comparisons of these substrates with orthologs throughout the ascomycete lineage revealed that the position of most phosphorylation sites is not conserved in evolution; instead, clusters of sites shift position in rapidly evolving disordered regions. We propose that the regulation of protein function by phosphorylation often depends on simple nonspecific mechanisms that disrupt or enhance protein-protein interactions. The gain or loss of phosphorylation sites in rapidly evolving regions could facilitate the evolution of kinase-signaling circuits.

1 Departments of Physiology and Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
2 Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
3 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: steven_gygi{at}hms.harvard.edu (S.P.G.); david.morgan{at}ucsf.edu (D.O.M.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action.
L. Kapitzky, P. Beltrao, T. J. Berens, N. Gassner, C. Zhou, A. Wuster, J. Wu, M. M. Babu, S. J. Elledge, D. Toczyski, et al. (2014)
Mol Syst Biol 6, 451
   Abstract »    Full Text »    PDF »
Differential network biology.
T. Ideker and N. J. Krogan (2014)
Mol Syst Biol 8, 565
   Abstract »    Full Text »    PDF »
Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression.
B. D. Landry, C. E. Mapa, H. E. Arsenault, K. E. Poti, and J. A. Benanti (2014)
EMBO J.
   Abstract »    Full Text »    PDF »
Evolution and functional cross-talk of protein post-translational modifications.
P. Beltrao, P. Bork, N. J. Krogan, and V. van Noort (2014)
Mol Syst Biol 9, 714
   Abstract »    Full Text »    PDF »
Cdk1-dependent phosphorylation of Iqg1 governs actomyosin ring assembly prior to cytokinesis.
S. G. Naylor and D. O. Morgan (2014)
J. Cell Sci. 127, 1128-1137
   Abstract »    Full Text »    PDF »
Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry.
J. V. Olsen and M. Mann (2013)
Mol. Cell. Proteomics 12, 3444-3452
   Abstract »    Full Text »    PDF »
Cell-cycle regulation of formin-mediated actin cable assembly.
Y. Miao, C. C. L. Wong, V. Mennella, A. Michelot, D. A. Agard, L. J. Holt, J. R. Yates III, and D. G. Drubin (2013)
PNAS 110, E4446-E4455
   Abstract »    Full Text »    PDF »
Dissection of Cdk1-cyclin complexes in vivo.
P. H. Ear, M. J. Booth, D. Abd-Rabbo, J. Kowarzyk Moreno, C. Hall, D. Chen, J. Vogel, and S. W. Michnick (2013)
PNAS 110, 15716-15721
   Abstract »    Full Text »    PDF »
Sit4p/PP6 regulates ER-to-Golgi traffic by controlling the dephosphorylation of COPII coat subunits.
D. Bhandari, J. Zhang, S. Menon, C. Lord, S. Chen, J. R. Helm, K. Thorsen, K. D. Corbett, J. C. Hay, and S. Ferro-Novick (2013)
Mol. Biol. Cell 24, 2727-2738
   Abstract »    Full Text »    PDF »
Cell cycle regulation of Greatwall kinase nuclear localization facilitates mitotic progression.
P. Wang, J. A. Galan, K. Normandin, E. Bonneil, G. R. Hickson, P. P. Roux, P. Thibault, and V. Archambault (2013)
J. Cell Biol. 202, 277-293
   Abstract »    Full Text »    PDF »
Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth.
G. Luo, J. Zhang, F. C. Luca, and W. Guo (2013)
J. Cell Biol. 202, 97-111
   Abstract »    Full Text »    PDF »
Multisite Light-Induced Phosphorylation of the Transcription Factor PIF3 Is Necessary for Both Its Rapid Degradation and Concomitant Negative Feedback Modulation of Photoreceptor phyB Levels in Arabidopsis.
W. Ni, S.-L. Xu, R. J. Chalkley, T. N. D. Pham, S. Guan, D. A. Maltby, A. L. Burlingame, Z.-Y. Wang, and P. H. Quail (2013)
PLANT CELL 25, 2679-2698
   Abstract »    Full Text »    PDF »
The PhosphoGRID Saccharomyces cerevisiae protein phosphorylation site database: version 2.0 update.
I. Sadowski, B.-J. Breitkreutz, C. Stark, T.-C. Su, M. Dahabieh, S. Raithatha, W. Bernhard, R. Oughtred, K. Dolinski, K. Barreto, et al. (2013)
Database 2013, bat026
   Abstract »    Full Text »    PDF »
Dual function of the NDR-kinase Dbf2 in the regulation of the F-BAR protein Hof1 during cytokinesis.
F. Meitinger, S. Palani, B. Hub, and G. Pereira (2013)
Mol. Biol. Cell 24, 1290-1304
   Abstract »    Full Text »    PDF »
Mitochondrial association, protein phosphorylation, and degradation regulate the availability of the active Rab GTPase Ypt11 for mitochondrial inheritance.
A. Lewandowska, J. Macfarlane, and J. M. Shaw (2013)
Mol. Biol. Cell 24, 1185-1195
   Abstract »    Full Text »    PDF »
Sphingolipid Homeostasis in the Endoplasmic Reticulum and Beyond.
D. K. Breslow (2013)
Cold Spring Harb Perspect Biol 5, a013326
   Abstract »    Full Text »    PDF »
Phosphoproteomic Analysis of Protein Kinase C Signaling in Saccharomyces cerevisiae Reveals Slt2 Mitogen-activated Protein Kinase (MAPK)-dependent Phosphorylation of Eisosome Core Components.
V. Mascaraque, M. L. Hernaez, M. Jimenez-Sanchez, R. Hansen, C. Gil, H. Martin, V. J. Cid, and M. Molina (2013)
Mol. Cell. Proteomics 12, 557-574
   Abstract »    Full Text »    PDF »
Coupling of septins to the axial landmark by Bud4 in budding yeast.
P. J. Kang, J. K. Hood-DeGrenier, and H.-O. Park (2013)
J. Cell Sci. 126, 1218-1226
   Abstract »    Full Text »    PDF »
Mediator Phosphorylation Prevents Stress Response Transcription During Non-stress Conditions.
C. Miller, I. Matic, K. C. Maier, B. Schwalb, S. Roether, K. Strasser, A. Tresch, M. Mann, and P. Cramer (2012)
J. Biol. Chem. 287, 44017-44026
   Abstract »    Full Text »    PDF »
Mitotic Exit and Separation of Mother and Daughter Cells.
E. L. Weiss (2012)
Genetics 192, 1165-1202
   Abstract »    Full Text »    PDF »
Reciprocal Phosphorylation of Yeast Glycerol-3-Phosphate Dehydrogenases in Adaptation to Distinct Types of Stress.
Y. J. Lee, G. R. Jeschke, F. M. Roelants, J. Thorner, and B. E. Turk (2012)
Mol. Cell. Biol. 32, 4705-4717
   Abstract »    Full Text »    PDF »
Evidence for Autoregulation and Cell Signaling Pathway Regulation From Genome-Wide Binding of the Drosophila Retinoblastoma Protein.
P. Acharya, N. Negre, J. Johnston, Y. Wei, K. P. White, R. W. Henry, and D. N. Arnosti (2012)
g3 2, 1459-1472
   Abstract »    Full Text »    PDF »
Phosphorylation network dynamics in the control of cell cycle transitions.
D. Fisher, L. Krasinska, D. Coudreuse, and B. Novak (2012)
J. Cell Sci. 125, 4703-4711
   Abstract »    Full Text »    PDF »
Plk1 Phosphorylates Sgt1 at the Kinetochores To Promote Timely Kinetochore-Microtubule Attachment.
X. S. Liu, B. Song, J. Tang, W. Liu, S. Kuang, and X. Liu (2012)
Mol. Cell. Biol. 32, 4053-4067
   Abstract »    Full Text »    PDF »
Regulation of the Cell Division Cycle in Trypanosoma brucei.
Z. Li (2012)
Eukaryot. Cell 11, 1180-1190
   Abstract »    Full Text »    PDF »
Protein abundance is key to distinguish promiscuous from functional phosphorylation based on evolutionary information.
E. D. Levy, S. W. Michnick, and C. R. Landry (2012)
Phil Trans R Soc B 367, 2594-2606
   Abstract »    Full Text »    PDF »
Cdk1-dependent control of membrane-trafficking dynamics.
D. McCusker, A. Royou, C. Velours, and D. Kellogg (2012)
Mol. Biol. Cell 23, 3336-3347
   Abstract »    Full Text »    PDF »
Cdc28-Cln3 phosphorylation of Sla1 regulates actin patch dynamics in different modes of fungal growth.
G. Zeng, Y.-M. Wang, and Y. Wang (2012)
Mol. Biol. Cell 23, 3485-3497
   Abstract »    Full Text »    PDF »
The Mitotic Exit Network and Cdc14 phosphatase initiate cytokinesis by counteracting CDK phosphorylations and blocking polarised growth.
A. Sanchez-Diaz, P. J. Nkosi, S. Murray, and K. Labib (2012)
EMBO J. 31, 3620-3634
   Abstract »    Full Text »    PDF »
Checkpoint kinase 2 (Chk2) inhibits the activity of the Cdc45/MCM2-7/GINS (CMG) replicative helicase complex.
I. Ilves, N. Tamberg, and M. R. Botchan (2012)
PNAS 109, 13163-13170
   Abstract »    Full Text »    PDF »
The Importance of Conserved Features of Yeast Actin-Binding Protein 1 (Abp1p): The Conditional Nature of Essentiality.
B. Garcia, E. J. Stollar, and A. R. Davidson (2012)
Genetics 191, 1199-1211
   Abstract »    Full Text »    PDF »
Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the vertebrates.
M. Tinti, C. Johnson, R. Toth, D. E. K. Ferrier, and C. MacKintosh (2012)
Open Bio 2, 120103
   Abstract »    Full Text »    PDF »
MMFPh: a maximal motif finder for phosphoproteomics datasets.
T. Wang, A. N. Kettenbach, S. A. Gerber, and C. Bailey-Kellogg (2012)
Bioinformatics 28, 1562-1570
   Abstract »    Full Text »    PDF »
Cell Polarization and Cytokinesis in Budding Yeast.
E. Bi and H.-O. Park (2012)
Genetics 191, 347-387
   Abstract »    Full Text »    PDF »
Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control.
J. R. Burke, G. L. Hura, and S. M. Rubin (2012)
Genes & Dev. 26, 1156-1166
   Abstract »    Full Text »    PDF »
Evaluation and Properties of the Budding Yeast Phosphoproteome.
G. D. Amoutzias, Y. He, K. S. Lilley, Y. Van de Peer, and S. G. Oliver (2012)
Mol. Cell. Proteomics 11, M111.009555
   Abstract »    Full Text »    PDF »
PKC-2 Phosphorylation of UNC-18 Ser322 in AFD Neurons Regulates Temperature Dependency of Locomotion.
M. R. Edwards, J. R. Johnson, K. Rankin, R. E. Jenkins, C. Maguire, A. Morgan, R. D. Burgoyne, and J. W. Barclay (2012)
J. Neurosci. 32, 7042-7051
   Abstract »    Full Text »    PDF »
CDK regulates septin organization through cell-cycle-dependent phosphorylation of the Nim1-related kinase Gin4.
C.-R. Li, J.-Y. A. Yong, Y.-M. Wang, and Y. Wang (2012)
J. Cell Sci. 125, 2533-2543
   Abstract »    Full Text »    PDF »
Global Detection of Protein Kinase D-dependent Phosphorylation Events in Nocodazole-treated Human Cells.
M. Franz-Wachtel, S. A. Eisler, K. Krug, S. Wahl, A. Carpy, A. Nordheim, K. Pfizenmaier, A. Hausser, and B. Macek (2012)
Mol. Cell. Proteomics 11, 160-170
   Abstract »    Full Text »    PDF »
Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs.
S. Sharifpoor, D. van Dyk, M. Costanzo, A. Baryshnikova, H. Friesen, A. C. Douglas, J.-Y. Youn, B. VanderSluis, C. L. Myers, B. Papp, et al. (2012)
Genome Res. 22, 791-801
   Abstract »    Full Text »    PDF »
Predicting kinase substrates using conservation of local motif density.
A. C. W. Lai, A. N. Nguyen Ba, and A. M. Moses (2012)
Bioinformatics 28, 962-969
   Abstract »    Full Text »    PDF »
Combination of Chemical Genetics and Phosphoproteomics for Kinase Signaling Analysis Enables Confident Identification of Cellular Downstream Targets.
F. S. Oppermann, K. Grundner-Culemann, C. Kumar, O. J. Gruss, P. V. Jallepalli, and H. Daub (2012)
Mol. Cell. Proteomics 11, O111.012351
   Abstract »    Full Text »    PDF »
The Sum1/Ndt80 Transcriptional Switch and Commitment to Meiosis in Saccharomyces cerevisiae.
E. Winter (2012)
Microbiol. Mol. Biol. Rev. 76, 1-15
   Abstract »    Full Text »    PDF »
Cdc7-Dbf4 Is a Gene-Specific Regulator of Meiotic Transcription in Yeast.
H.-C. Lo, R. C. Kunz, X. Chen, A. Marullo, S. P. Gygi, and N. M. Hollingsworth (2012)
Mol. Cell. Biol. 32, 541-557
   Abstract »    Full Text »    PDF »
Cdc14 Phosphatases Preferentially Dephosphorylate a Subset of Cyclin-dependent kinase (Cdk) Sites Containing Phosphoserine.
S. C. Bremmer, H. Hall, J. S. Martinez, C. L. Eissler, T. H. Hinrichsen, S. Rossie, L. L. Parker, M. C. Hall, and H. Charbonneau (2012)
J. Biol. Chem. 287, 1662-1669
   Abstract »    Full Text »    PDF »
Meiosis I chromosome segregation is established through regulation of microtubule-kinetochore interactions.
M. P. Miller, E. Unal, G. A. Brar, and A. Amon (2012)
eLife Sci 1, e00117
   Abstract »    Full Text »    PDF »
Morphogenesis and the Cell Cycle.
A. S. Howell and D. J. Lew (2012)
Genetics 190, 51-77
   Abstract »    Full Text »    PDF »
Dependence of Chs2 ER export on dephosphorylation by cytoplasmic Cdc14 ensures that septum formation follows mitosis.
C. F. Chin, A. M. Bennett, W. K. Ma, M. C. Hall, and F. M. Yeong (2012)
Mol. Biol. Cell 23, 45-58
   Abstract »    Full Text »    PDF »
Switches and latches: a biochemical tug-of-war between the kinases and phosphatases that control mitosis.
M. R. Domingo-Sananes, O. Kapuy, T. Hunt, and B. Novak (2011)
Phil Trans R Soc B 366, 3584-3594
   Abstract »    Full Text »    PDF »
Subunit-dependent modulation of septin assembly: Budding yeast septin Shs1 promotes ring and gauze formation.
G. Garcia III, A. Bertin, Z. Li, Y. Song, M. A. McMurray, J. Thorner, and E. Nogales (2011)
J. Cell Biol. 195, 993-1004
   Abstract »    Full Text »    PDF »
Restriction of histone gene transcription to S phase by phosphorylation of a chromatin boundary protein.
C. F. Kurat, J.-P. Lambert, D. van Dyk, K. Tsui, H. van Bakel, S. Kaluarachchi, H. Friesen, P. Kainth, C. Nislow, D. Figeys, et al. (2011)
Genes & Dev. 25, 2489-2501
   Abstract »    Full Text »    PDF »
Evaluation of HCD- and CID-type Fragmentation Within Their Respective Detection Platforms For Murine Phosphoproteomics.
M. P. Jedrychowski, E. L. Huttlin, W. Haas, M. E. Sowa, R. Rad, and S. P. Gygi (2011)
Mol. Cell. Proteomics 10, M111.009910
   Abstract »    Full Text »    PDF »
Online Nanoflow Multidimensional Fractionation for High Efficiency Phosphopeptide Analysis.
S. B. Ficarro, Y. Zhang, M. J. Carrasco-Alfonso, B. Garg, G. Adelmant, J. T. Webber, C. J. Luckey, and J. A. Marto (2011)
Mol. Cell. Proteomics 10, O111.011064
   Abstract »    Full Text »    PDF »
Identification of novel phosphorylation modification sites in human proteins that originated after the human-chimpanzee divergence.
D. S. Kim and Y. Hahn (2011)
Bioinformatics 27, 2494-2501
   Abstract »    Full Text »    PDF »
A Directed Protein Interaction Network for Investigating Intracellular Signal Transduction.
A. Vinayagam, U. Stelzl, R. Foulle, S. Plassmann, M. Zenkner, J. Timm, H. E. Assmus, M. A. Andrade-Navarro, and E. E. Wanker (2011)
Science Signaling 4, rs8
   Abstract »    Full Text »    PDF »
Genome-Wide Evolutionary Conservation of N-Glycosylation Sites.
C. Park and J. Zhang (2011)
Mol. Biol. Evol. 28, 2351-2357
   Abstract »    Full Text »    PDF »
Correct Interpretation of Comprehensive Phosphorylation Dynamics Requires Normalization by Protein Expression Changes.
R. Wu, N. Dephoure, W. Haas, E. L. Huttlin, B. Zhai, M. E. Sowa, and S. P. Gygi (2011)
Mol. Cell. Proteomics 10, M111.009654
   Abstract »    Full Text »    PDF »
Sequence, Structure, and Network Evolution of Protein Phosphorylation.
C. S. H. Tan (2011)
Science Signaling 4, mr6
   Abstract »    Full Text »    PDF »
CDK-dependent phosphorylation of Mob2 is essential for hyphal development in Candida albicans.
P. Gutierrez-Escribano, A. Gonzalez-Novo, M. B. Suarez, C.-R. Li, Y. Wang, C. R. V. de Aldana, and J. Correa-Bordes (2011)
Mol. Biol. Cell 22, 2458-2469
   Abstract »    Full Text »    PDF »
Physiological Relevance of Cell Cycle Kinases.
M. Malumbres (2011)
Physiol Rev 91, 973-1007
   Abstract »    Full Text »    PDF »
Evolution of Nuclear Retinoic Acid Receptor Alpha (RAR{alpha}) Phosphorylation Sites. Serine Gain Provides Fine-Tuned Regulation.
E. Samarut, I. Amal, G. V. Markov, R. Stote, A. Dejaegere, V. Laudet, and C. Rochette-Egly (2011)
Mol. Biol. Evol. 28, 2125-2137
   Abstract »    Full Text »    PDF »
Quantitative Phosphoproteomics Identifies Substrates and Functional Modules of Aurora and Polo-Like Kinase Activities in Mitotic Cells.
A. N. Kettenbach, D. K. Schweppe, B. K. Faherty, D. Pechenick, A. A. Pletnev, and S. A. Gerber (2011)
Science Signaling 4, rs5
   Abstract »    Full Text »    PDF »
Mitotic Substrates of the Kinase Aurora with Roles in Chromatin Regulation Identified Through Quantitative Phosphoproteomics of Fission Yeast.
A. Koch, K. Krug, S. Pengelley, B. Macek, and S. Hauf (2011)
Science Signaling 4, rs6
   Abstract »    Full Text »    PDF »
Substrates of Mitotic Kinases.
L. N. Johnson (2011)
Science Signaling 4, pe31
   Abstract »    Full Text »    PDF »
Spatial Exclusivity Combined with Positive and Negative Selection of Phosphorylation Motifs Is the Basis for Context-Dependent Mitotic Signaling.
J. Alexander, D. Lim, B. A. Joughin, B. Hegemann, J. R. A. Hutchins, T. Ehrenberger, F. Ivins, F. Sessa, O. Hudecz, E. A. Nigg, et al. (2011)
Science Signaling 4, ra42
   Abstract »    Full Text »    PDF »
CDK-1 inhibits meiotic spindle shortening and dynein-dependent spindle rotation in C. elegans.
M. L. Ellefson and F. J. McNally (2011)
J. Cell Biol. 193, 1229-1244
   Abstract »    Full Text »    PDF »
A Cell Cycle Phosphoproteome of the Yeast Centrosome.
J. M. Keck, M. H. Jones, C. C. L. Wong, J. Binkley, D. Chen, S. L. Jaspersen, E. P. Holinger, T. Xu, M. Niepel, M. P. Rout, et al. (2011)
Science 332, 1557-1561
   Abstract »    Full Text »    PDF »
Structure-Function Analysis of the C-terminal Domain of CNM67, a Core Component of the Saccharomyces cerevisiae Spindle Pole Body.
V. A. Klenchin, J. J. Frye, M. H. Jones, M. Winey, and I. Rayment (2011)
J. Biol. Chem. 286, 18240-18250
   Abstract »    Full Text »    PDF »
Cdk2-dependent phosphorylation of p21 regulates the role of Cdk2 in cisplatin cytotoxicity.
R. Hodeify, A. Tarcsafalvi, J. Megyesi, R. L. Safirstein, and P. M. Price (2011)
Am J Physiol Renal Physiol 300, F1171-F1179
   Abstract »    Full Text »    PDF »
Evolution of Protein Phosphorylation for Distinct Functional Modules in Vertebrate Genomes.
Z. Wang, G. Ding, L. Geistlinger, H. Li, L. Liu, R. Zeng, Y. Tateno, and Y. Li (2011)
Mol. Biol. Evol. 28, 1131-1140
   Abstract »    Full Text »    PDF »
Global Analysis of Cdc14 Phosphatase Reveals Diverse Roles in Mitotic Processes.
J. Bloom, I. M. Cristea, A. L. Procko, V. Lubkov, B. T. Chait, M. Snyder, and F. R. Cross (2011)
J. Biol. Chem. 286, 5434-5445
   Abstract »    Full Text »    PDF »
Mitotic Exit Control of the Saccharomyces cerevisiae Ndr/LATS Kinase Cbk1 Regulates Daughter Cell Separation after Cytokinesis.
J. Brace, J. Hsu, and E. L. Weiss (2011)
Mol. Cell. Biol. 31, 721-735
   Abstract »    Full Text »    PDF »
Nuclear Import of Histone Deacetylase 5 by Requisite Nuclear Localization Signal Phosphorylation.
T. M. Greco, F. Yu, A. J. Guise, and I. M. Cristea (2011)
Mol. Cell. Proteomics 10, M110.004317
   Abstract »    Full Text »    PDF »
Phosphorylation of Grainy head by ERK is essential for wound-dependent regeneration but not for development of an epidermal barrier.
M. Kim and W. McGinnis (2011)
PNAS 108, 650-655
   Abstract »    Full Text »    PDF »
Phospho.ELM: a database of phosphorylation sites--update 2011.
H. Dinkel, C. Chica, A. Via, C. M. Gould, L. J. Jensen, T. J. Gibson, and F. Diella (2011)
Nucleic Acids Res. 39, D261-D267
   Abstract »    Full Text »    PDF »
The Plk1-dependent Phosphoproteome of the Early Mitotic Spindle.
A. Santamaria, B. Wang, S. Elowe, R. Malik, F. Zhang, M. Bauer, A. Schmidt, H. H. W. Sillje, R. Korner, and E. A. Nigg (2011)
Mol. Cell. Proteomics 10, M110.004457
   Abstract »    Full Text »    PDF »
Phosphoproteomic Analysis Reveals Interconnected System-Wide Responses to Perturbations of Kinases and Phosphatases in Yeast.
B. Bodenmiller, S. Wanka, C. Kraft, J. Urban, D. Campbell, P. G. Pedrioli, B. Gerrits, P. Picotti, H. Lam, O. Vitek, et al. (2010)
Science Signaling 3, rs4
   Abstract »    Full Text »    PDF »
Endocytosis of the Aspartic Acid/Glutamic Acid Transporter Dip5 Is Triggered by Substrate-Dependent Recruitment of the Rsp5 Ubiquitin Ligase via the Arrestin-Like Protein Aly2.
R. Hatakeyama, M. Kamiya, T. Takahara, and T. Maeda (2010)
Mol. Cell. Biol. 30, 5598-5607
   Abstract »    Full Text »    PDF »
Coevolution within a transcriptional network by compensatory trans and cis mutations.
D. Kuo, K. Licon, S. Bandyopadhyay, R. Chuang, C. Luo, J. Catalana, T. Ravasi, K. Tan, and T. Ideker (2010)
Genome Res. 20, 1672-1678
   Abstract »    Full Text »    PDF »
Cdc14-Dependent Dephosphorylation of a Kinetochore Protein Prior to Anaphase in Saccharomyces cerevisiae.
B. Akiyoshi and S. Biggins (2010)
Genetics 186, 1487-1491
   Abstract »    Full Text »    PDF »
O-GlcNAc Transferase Regulates Mitotic Chromatin Dynamics.
K. Sakabe and G. W. Hart (2010)
J. Biol. Chem. 285, 34460-34468
   Abstract »    Full Text »    PDF »
Glycoprotein Capture and Quantitative Phosphoproteomics Indicate Coordinated Regulation of Cell Migration upon Lysophosphatidic Acid Stimulation.
N. Mausbacher, T. B. Schreiber, and H. Daub (2010)
Mol. Cell. Proteomics 9, 2337-2353
   Abstract »    Full Text »    PDF »
Promoter Strength Influences the S Phase Requirement for Establishment of Silencing at the Saccharomyces cerevisiae Silent Mating Type Loci.
J. Ren, C.-L. Wang, and R. Sternglanz (2010)
Genetics 186, 551-560
   Abstract »    Full Text »    PDF »
Cdk Phosphorylation of a Nucleoporin Controls Localization of Active Genes through the Cell Cycle.
D. Garvey Brickner and J. H. Brickner (2010)
Mol. Biol. Cell 21, 3421-3432
   Abstract »    Full Text »    PDF »
Elm1 kinase activates the spindle position checkpoint kinase Kin4.
A. K. Caydasi, B. Kurtulmus, M. I. L. Orrico, A. Hofmann, B. Ibrahim, and G. Pereira (2010)
J. Cell Biol. 190, 975-989
   Abstract »    Full Text »    PDF »
Evolution of Characterized Phosphorylation Sites in Budding Yeast.
A. N. Nguyen Ba and A. M. Moses (2010)
Mol. Biol. Evol. 27, 2027-2037
   Abstract »    Full Text »    PDF »
Sequential Counteracting Kinases Restrict an Asymmetric Gene Expression Program to early G1.
E. Mazanka and E. L. Weiss (2010)
Mol. Biol. Cell 21, 2809-2820
   Abstract »    Full Text »    PDF »
The Phosphoproteome of the Minimal Bacterium Mycoplasma pneumoniae: ANALYSIS OF THE COMPLETE KNOWN SER/THR KINOME SUGGESTS THE EXISTENCE OF NOVEL KINASES.
S. R. Schmidl, K. Gronau, N. Pietack, M. Hecker, D. Becher, and J. Stulke (2010)
Mol. Cell. Proteomics 9, 1228-1242
   Abstract »    Full Text »    PDF »
Signaling Through Cooperation.
E. D. Levy, C. R. Landry, and S. W. Michnick (2010)
Science 328, 983-984
   Abstract »    Full Text »    PDF »
Dissecting the M Phase-specific Phosphorylation of Serine-Proline or Threonine-Proline Motifs.
C. F. Wu, R. Wang, Q. Liang, J. Liang, W. Li, S. Y. Jung, J. Qin, S. H. Lin, and J. Kuang (2010)
Mol. Biol. Cell 21, 1470-1481
   Abstract »    Full Text »    PDF »
N-terminal regions of Mps1 kinase determine functional bifurcation.
Y. Araki, L. Gombos, S. P. S. Migueleti, L. Sivashanmugam, C. Antony, and E. Schiebel (2010)
J. Cell Biol. 189, 41-56
   Abstract »    Full Text »    PDF »
Posttranslational regulation impacts the fate of duplicated genes.
G. D. Amoutzias, Y. He, J. Gordon, D. Mossialos, S. G. Oliver, and Y. Van de Peer (2010)
PNAS 107, 2967-2971
   Abstract »    Full Text »    PDF »
2009: Signaling Breakthroughs of the Year.
E. M. Adler (2010)
Science Signaling 3, eg1
   Abstract »    Full Text »    PDF »
Evolving Cell Signals.
M. O. Collins (2009)
Science 325, 1635-1636
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882