Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 325 (5948): 1686-1688

Copyright © 2009 by the American Association for the Advancement of Science

Positive Selection of Tyrosine Loss in Metazoan Evolution

Chris Soon Heng Tan,1,2,3 Adrian Pasculescu,1 Wendell A. Lim,4 Tony Pawson,1,2,* Gary D. Bader,1,2,3,* Rune Linding5,*

Abstract: John Nash showed that within a complex system, individuals are best off if they make the best decision that they can, taking into account the decisions of the other individuals. Here, we investigate whether similar principles influence the evolution of signaling networks in multicellular animals. Specifically, by analyzing a set of metazoan species we observed a striking negative correlation of genomically encoded tyrosine content with biological complexity (as measured by the number of cell types in each organism). We discuss how this observed tyrosine loss correlates with the expansion of tyrosine kinases in the evolution of the metazoan lineage and how it may relate to the optimization of signaling systems in multicellular animals. We propose that this phenomenon illustrates genome-wide adaptive evolution to accommodate beneficial genetic perturbation.

1 Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.
2 Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada.
3 Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada.
4 Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
5 Cellular and Molecular Logic Team, Section of Cell and Molecular Biology, The Institute of Cancer Research (ICR), London, SW3 6JB, UK.

* To whom correspondence should be addressed. E-mail: pawson{at} (T.P.); gary.bader{at} (G.D.B.); linding{at} (R.L.)

Evolution and functional cross-talk of protein post-translational modifications.
P. Beltrao, P. Bork, N. J. Krogan, and V. van Noort (2014)
Mol Syst Biol 9, 714
   Abstract »    Full Text »    PDF »
SH3 interactome conserves general function over specific form.
X. Xin, D. Gfeller, J. Cheng, R. Tonikian, L. Sun, A. Guo, L. Lopez, A. Pavlenco, A. Akintobi, Y. Zhang, et al. (2014)
Mol Syst Biol 9, 652
   Abstract »    Full Text »    PDF »
ERK-Mediated Phosphorylation of Fibroblast Growth Factor Receptor 1 on Ser777 Inhibits Signaling.
M. Zakrzewska, E. M. Haugsten, B. Nadratowska-Wesolowska, A. Oppelt, B. Hausott, Y. Jin, J. Otlewski, J. Wesche, and A. Wiedlocha (2013)
Science Signaling 6, ra11
   Abstract »    Full Text »    PDF »
Lengthening of 3'UTR increases with morphological complexity in animal evolution.
C.-Y. Chen, S.-T. Chen, H.-F. Juan, and H.-C. Huang (2012)
Bioinformatics 28, 3178-3181
   Abstract »    Full Text »    PDF »
Superbinder SH2 Domains Act as Antagonists of Cell Signaling.
T. Kaneko, H. Huang, X. Cao, X. Li, C. Li, C. Voss, S. S. Sidhu, and S. S. C. Li (2012)
Science Signaling 5, ra68
   Abstract »    Full Text »    PDF »
Mutational properties of amino acid residues: implications for evolvability of phosphorylatable residues.
P. Creixell, E. M. Schoof, C. S. H. Tan, and R. Linding (2012)
Phil Trans R Soc B 367, 2584-2593
   Abstract »    Full Text »    PDF »
Evolution of SH2 domains and phosphotyrosine signalling networks.
B. A. Liu and P. D. Nash (2012)
Phil Trans R Soc B 367, 2556-2573
   Abstract »    Full Text »    PDF »
Identification of aberrant pathways and network activities from high-throughput data.
J. Wang, Y. Zhang, C. Marian, and H. W. Ressom (2012)
Brief Bioinform 13, 406-419
   Abstract »    Full Text »    PDF »
The human phosphotyrosine signaling network: Evolution and hotspots of hijacking in cancer.
L. Li, C. Tibiche, C. Fu, T. Kaneko, M. F. Moran, M. R. Schiller, S. S.-C. Li, and E. Wang (2012)
Genome Res. 22, 1222-1230
   Abstract »    Full Text »    PDF »
PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse.
P. V. Hornbeck, J. M. Kornhauser, S. Tkachev, B. Zhang, E. Skrzypek, B. Murray, V. Latham, and M. Sullivan (2012)
Nucleic Acids Res. 40, D261-D270
   Abstract »    Full Text »    PDF »
Identification of novel phosphorylation modification sites in human proteins that originated after the human-chimpanzee divergence.
D. S. Kim and Y. Hahn (2011)
Bioinformatics 27, 2494-2501
   Abstract »    Full Text »    PDF »
Comment on "Positive Selection of Tyrosine Loss in Metazoan Evolution".
Z. Su, W. Huang, and X. Gu (2011)
Science 332, 917
   Abstract »    Full Text »    PDF »
Response to Comment on "Positive Selection of Tyrosine Loss in Metazoan Evolution".
C. S. H. Tan, E. M. Schoof, P. Creixell, A. Pasculescu, W. A. Lim, T. Pawson, G. D. Bader, and R. Linding (2011)
Science 332, 917
   Abstract »    Full Text »    PDF »
Cdk2-dependent phosphorylation of p21 regulates the role of Cdk2 in cisplatin cytotoxicity.
R. Hodeify, A. Tarcsafalvi, J. Megyesi, R. L. Safirstein, and P. M. Price (2011)
Am J Physiol Renal Physiol 300, F1171-F1179
   Abstract »    Full Text »    PDF »
Evolution of Protein Phosphorylation for Distinct Functional Modules in Vertebrate Genomes.
Z. Wang, G. Ding, L. Geistlinger, H. Li, L. Liu, R. Zeng, Y. Tateno, and Y. Li (2011)
Mol. Biol. Evol. 28, 1131-1140
   Abstract »    Full Text »    PDF »
Phospho.ELM: a database of phosphorylation sites--update 2011.
H. Dinkel, C. Chica, A. Via, C. M. Gould, L. J. Jensen, T. J. Gibson, and F. Diella (2011)
Nucleic Acids Res. 39, D261-D267
   Abstract »    Full Text »    PDF »
2009: Signaling Breakthroughs of the Year.
E. M. Adler (2010)
Science Signaling 3, eg1
   Abstract »    Full Text »    PDF »
Cell-Specific Information Processing in Segregating Populations of Eph Receptor Ephrin-Expressing Cells.
C. Jorgensen, A. Sherman, G. I. Chen, A. Pasculescu, A. Poliakov, M. Hsiung, B. Larsen, D. G. Wilkinson, R. Linding, and T. Pawson (2009)
Science 326, 1502-1509
   Abstract »    Full Text »    PDF »
Evolving Cell Signals.
M. O. Collins (2009)
Science 325, 1635-1636
   Abstract »    Full Text »    PDF »
Comparative Analysis Reveals Conserved Protein Phosphorylation Networks Implicated in Multiple Diseases.
C. S. H. Tan, B. Bodenmiller, A. Pasculescu, M. Jovanovic, M. O. Hengartner, C. Jorgensen, G. D. Bader, R. Aebersold, T. Pawson, and R. Linding (2009)
Science Signaling 2, ra39
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882