Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 326 (5950): 281-284

Copyright © 2009 by the American Association for the Advancement of Science

Daily Electrical Silencing in the Mammalian Circadian Clock

Mino D. C. Belle,1 Casey O. Diekman,2,4 Daniel B. Forger,3,4 Hugh D. Piggins1,*

Abstract: Neurons in the brain’s suprachiasmatic nuclei (SCNs), which control the timing of daily rhythms, are thought to encode time of day by changing their firing frequency, with high rates during the day and lower rates at night. Some SCN neurons express a key clock gene, period 1 (per1). We found that during the day, neurons containing per1 sustain an electrically excited state and do not fire, whereas non-per1 neurons show the previously reported daily variation in firing activity. Using a combined experimental and theoretical approach, we explain how ionic currents lead to the unusual electrophysiological behaviors of per1 cells, which unlike other mammalian brain cells can survive and function at depolarized states.

1 Faculty of Life Sciences, A. V. Hill Building, University of Manchester, Manchester M13 9PT, UK.
2 Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
3 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA.
4 Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.

* To whom correspondence should be addressed. E-mail: hugh.d.piggins{at}manchester.ac.uk


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Acute Suppressive and Long-Term Phase Modulation Actions of Orexin on the Mammalian Circadian Clock.
M. D. C. Belle, A. T. L. Hughes, D. A. Bechtold, P. Cunningham, M. Pierucci, D. Burdakov, and H. D. Piggins (2014)
J. Neurosci. 34, 3607-3621
   Abstract »    Full Text »    PDF »
Daily variation in the electrophysiological activity of mouse medial habenula neurones.
K. Sakhi, M. D. C. Belle, N. Gossan, P. Delagrange, and H. D. Piggins (2014)
J. Physiol. 592, 587-603
   Abstract »    Full Text »    PDF »
Multilevel regulation: Controlling BK channels in central clock neurons.
L. D. Plant (2013)
J. Gen. Physiol. 142, 579-583
   Full Text »    PDF »
Modeling Interindividual Differences in Spontaneous Internal Desynchrony Patterns.
R. D. Gleit, C. G. Diniz Behn, and V. Booth (2013)
J Biol Rhythms 28, 339-355
   Abstract »    Full Text »    PDF »
Mis-expression of the BK K+ channel disrupts suprachiasmatic nucleus circuit rhythmicity and alters clock-controlled behavior.
J. R. Montgomery, J. P. Whitt, B. N. Wright, M. H. Lai, and A. L. Meredith (2013)
Am J Physiol Cell Physiol 304, C299-C311
   Abstract »    Full Text »    PDF »
Modeling the Effects of the Circadian Clock on Cardiac Electrophysiology.
P. Fotiadis and D. B. Forger (2013)
J Biol Rhythms 28, 69-78
   Abstract »    Full Text »    PDF »
A Mechanism for Circadian Control of Pacemaker Neuron Excitability.
M. Ruben, M. D. Drapeau, D. Mizrak, and J. Blau (2012)
J Biol Rhythms 27, 353-364
   Abstract »    Full Text »    PDF »
Circadian Time Redoxed.
M. D. C. Belle and H. D. Piggins (2012)
Science 337, 805-806
   Abstract »    Full Text »    PDF »
Circadian Rhythm of Redox State Regulates Excitability in Suprachiasmatic Nucleus Neurons.
T. A. Wang, Y. V. Yu, G. Govindaiah, X. Ye, L. Artinian, T. P. Coleman, J. V. Sweedler, C. L. Cox, and M. U. Gillette (2012)
Science 337, 839-842
   Abstract »    Full Text »    PDF »
Period Coding of Bmal1 Oscillators in the Suprachiasmatic Nucleus.
J. Myung, S. Hong, F. Hatanaka, Y. Nakajima, E. De Schutter, and T. Takumi (2012)
J. Neurosci. 32, 8900-8918
   Abstract »    Full Text »    PDF »
Evidence for Neuronal Desynchrony in the Aged Suprachiasmatic Nucleus Clock.
S. Farajnia, S. Michel, T. Deboer, H. T. vanderLeest, T. Houben, J. H. T. Rohling, A. Ramkisoensing, R. Yasenkov, and J. H. Meijer (2012)
J. Neurosci. 32, 5891-5899
   Abstract »    Full Text »    PDF »
Circadian regulation of sleep-wake behaviour in nocturnal rats requires multiple signals from suprachiasmatic nucleus.
M. Fleshner, V. Booth, D. B. Forger, and C. G. Diniz Behn (2011)
Phil Trans R Soc A 369, 3855-3883
   Abstract »    Full Text »    PDF »
Cyclic AMP Signaling Control of Action Potential Firing Rate and Molecular Circadian Pacemaking in the Suprachiasmatic Nucleus.
S. E. Atkinson, E. S. Maywood, J. E. Chesham, C. Wozny, C. S. Colwell, M. H. Hastings, and S. R. Williams (2011)
J Biol Rhythms 26, 210-220
   Abstract »    PDF »
Multiple hypothalamic cell populations encoding distinct visual information.
T. M. Brown, J. Wynne, H. D. Piggins, and R. J. Lucas (2011)
J. Physiol. 589, 1173-1194
   Abstract »    Full Text »    PDF »
Highlights From The Literature.
(2010)
Physiology 25, 3-7
   Full Text »    PDF »
Circadian Regulation of A-Type Potassium Currents in the Suprachiasmatic Nucleus.
J. N. Itri, A. M. Vosko, A. Schroeder, J. M. Dragich, S. Michel, and C. S. Colwell (2010)
J Neurophysiol 103, 632-640
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882