Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 326 (5950): 294-298

Copyright © 2009 by the American Association for the Advancement of Science

Arterial-Venous Segregation by Selective Cell Sprouting: An Alternative Mode of Blood Vessel Formation

Shane P. Herbert,1,2 Jan Huisken,1 Tyson N. Kim,3 Morri E. Feldman,4 Benjamin T. Houseman,5 Rong A. Wang,3 Kevan M. Shokat,5 Didier Y. R. Stainier1,*

Abstract: Blood vessels form de novo (vasculogenesis) or upon sprouting of capillaries from preexisting vessels (angiogenesis). With high-resolution imaging of zebrafish vascular development, we uncovered a third mode of blood vessel formation whereby the first embryonic artery and vein, two unconnected blood vessels, arise from a common precursor vessel. The first embryonic vein formed by selective sprouting of progenitor cells from the precursor vessel, followed by vessel segregation. These processes were regulated by the ligand EphrinB2 and its receptor EphB4, which are expressed in arterial-fated and venous-fated progenitors, respectively, and interact to orient the direction of progenitor migration. Thus, directional control of progenitor migration drives arterial-venous segregation and generation of separate parallel vessels from a single precursor vessel, a process essential for vascular development.

1 Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
2 Multidisciplinary Cardiovascular Research Centre and Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
3 Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, USA.
4 Graduate Group in Biophysics, University of California, San Francisco, CA 94158, USA.
5 Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.

* To whom correspondence should be addressed. E-mail: Didier.Stainier{at}ucsf.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Distinct Notch signaling outputs pattern the developing arterial system.
A. Quillien, J. C. Moore, M. Shin, A. F. Siekmann, T. Smith, L. Pan, C. B. Moens, M. J. Parsons, and N. D. Lawson (2014)
Development 141, 1544-1552
   Abstract »    Full Text »    PDF »
Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals.
H. Lindskog, Y. H. Kim, E. B. Jelin, Y. Kong, S. Guevara-Gallardo, T. N. Kim, and R. A. Wang (2014)
Development 141, 1120-1128
   Abstract »    Full Text »    PDF »
VEGFD regulates blood vascular development by modulating SOX18 activity.
T. Duong, K. Koltowska, C. Pichol-Thievend, L. Le Guen, F. Fontaine, K. A. Smith, V. Truong, R. Skoczylas, S. A. Stacker, M. G. Achen, et al. (2014)
Blood 123, 1102-1112
   Abstract »    Full Text »    PDF »
Inhibition of the p110{alpha} isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis.
A. Soler, H. Serra, W. Pearce, A. Angulo, J. Guillermet-Guibert, L. S. Friedman, F. Vinals, H. Gerhardt, O. Casanovas, M. Graupera, et al. (2013)
J. Exp. Med. 210, 1937-1945
   Abstract »    Full Text »    PDF »
Loss of Pten promotes angiogenesis and enhanced vegfaa expression in zebrafish.
S. Choorapoikayil, B. Weijts, R. Kers, A. de Bruin, and J. den Hertog (2013)
Dis. Model. Mech. 6, 1159-1166
   Abstract »    Full Text »    PDF »
Analysis of Dll4 regulation reveals a combinatorial role for Sox and Notch in arterial development.
N. Sacilotto, R. Monteiro, M. Fritzsche, P. W. Becker, L. Sanchez-del-Campo, K. Liu, P. Pinheiro, I. Ratnayaka, B. Davies, C. R. Goding, et al. (2013)
PNAS 110, 11893-11898
   Abstract »    Full Text »    PDF »
The zebrafish common cardinal veins develop by a novel mechanism: lumen ensheathment.
C. S. M. Helker, A. Schuermann, T. Karpanen, D. Zeuschner, H.-G. Belting, M. Affolter, S. Schulte-Merker, and W. Herzog (2013)
Development 140, 2776-2786
   Abstract »    Full Text »    PDF »
Endothelial Shc Regulates Arteriogenesis Through Dual Control of Arterial Specification and Inflammation via the Notch and Nuclear Factor-{kappa}-Light-Chain-Enhancer of Activated B-Cell Pathways.
D. T. Sweet, Z. Chen, C. S. Givens, A. P. Owens III, M. Rojas, and E. Tzima (2013)
Circ. Res. 113, 32-39
   Abstract »    Full Text »    PDF »
A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development.
J. A. Villefranc, S. Nicoli, K. Bentley, M. Jeltsch, G. Zarkada, J. C. Moore, H. Gerhardt, K. Alitalo, and N. D. Lawson (2013)
Development 140, 1497-1506
   Abstract »    Full Text »    PDF »
A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy.
R. Hagerling, C. Pollmann, M. Andreas, C. Schmidt, H. Nurmi, R. H. Adams, K. Alitalo, V. Andresen, S. Schulte-Merker, and F. Kiefer (2013)
EMBO J. 32, 629-644
   Abstract »    Full Text »    PDF »
Pial arteriovenous fistulae in pediatric patients: associated syndromes and treatment outcome.
B. P. Walcott, E. R. Smith, R. M. Scott, and D. B. Orbach (2013)
JNIS 5, 10-14
   Abstract »    Full Text »    PDF »
Eph/ephrin signalling during development.
R. Klein (2012)
Development 139, 4105-4109
   Abstract »    Full Text »    PDF »
Sphingosine-1-Phosphate Receptor-1 Controls Venous Endothelial Barrier Integrity in Zebrafish.
C. Tobia, P. Chiodelli, S. Nicoli, P. Dell'Era, S. Buraschi, S. Mitola, E. Foglia, P. B. van Loenen, A. E. Alewijnse, and M. Presta (2012)
Arterioscler Thromb Vasc Biol 32, e104-e116
   Abstract »    Full Text »    PDF »
CDP-diacylglycerol synthetase-controlled phosphoinositide availability limits VEGFA signaling and vascular morphogenesis.
W. Pan, V. N. Pham, A. N. Stratman, D. Castranova, M. Kamei, K. R. Kidd, B. D. Lo, K. M. Shaw, J. Torres-Vazquez, C. M. Mikelis, et al. (2012)
Blood 120, 489-498
   Abstract »    Full Text »    PDF »
Hedgehog signaling via a calcitonin receptor-like receptor can induce arterial differentiation independently of VEGF signaling in zebrafish.
R. N. Wilkinson, M. J. Koudijs, R. K. Patient, P. W. Ingham, S. Schulte-Merker, and F. J. M. van Eeden (2012)
Blood 120, 477-488
   Abstract »    Full Text »    PDF »
Vascular Development in the Zebrafish.
A. V. Gore, K. Monzo, Y. R. Cha, W. Pan, and B. M. Weinstein (2012)
Cold Spring Harb Perspect Med 2, a006684
   Abstract »    Full Text »    PDF »
Vascular Lumen Formation.
E. Lammert and J. Axnick (2012)
Cold Spring Harb Perspect Med 2, a006619
   Abstract »    Full Text »    PDF »
miR-27b controls venous specification and tip cell fate.
D. Biyashev, D. Veliceasa, J. Topczewski, J. M. Topczewska, I. Mizgirev, E. Vinokour, A. L. Reddi, J. D. Licht, S. Y. Revskoy, and O. V. Volpert (2012)
Blood 119, 2679-2687
   Abstract »    Full Text »    PDF »
Tips, Stalks, Tubes: Notch-Mediated Cell Fate Determination and Mechanisms of Tubulogenesis during Angiogenesis.
J. J. Tung, I. W. Tattersall, and J. Kitajewski (2012)
Cold Spring Harb Perspect Med 2, a006601
   Abstract »    Full Text »    PDF »
Notch Signaling in Developmental and Tumor Angiogenesis.
N. M. Kofler, C. J. Shawber, T. Kangsamaksin, H. O. Reed, J. Galatioto, and J. Kitajewski (2011)
Genes & Cancer 2, 1106-1116
   Abstract »    Full Text »    PDF »
Rspo1/Wnt signaling promotes angiogenesis via Vegfc/Vegfr3.
A. V. Gore, M. R. Swift, Y. R. Cha, B. Lo, M. C. McKinney, W. Li, D. Castranova, A. Davis, Y.-s. Mukouyama, and B. M. Weinstein (2011)
Development 138, 4875-4886
   Abstract »    Full Text »    PDF »
Silencing of RhoA nucleotide exchange factor, ARHGEF3, reveals its unexpected role in iron uptake.
J. Serbanovic-Canic, A. Cvejic, N. Soranzo, D. L. Stemple, W. H. Ouwehand, and K. Freson (2011)
Blood 118, 4967-4976
   Abstract »    Full Text »    PDF »
The Notch1-Dll4 signaling pathway regulates mouse postnatal lymphatic development.
K. Niessen, G. Zhang, J. B. Ridgway, H. Chen, G. Kolumam, C. W. Siebel, and M. Yan (2011)
Blood 118, 1989-1997
   Abstract »    Full Text »    PDF »
Key Transcriptional Regulators of Early Vascular Development.
S. De Val (2011)
Arterioscler Thromb Vasc Biol 31, 1469-1475
   Abstract »    Full Text »    PDF »
Live Imaging of Zebrafish Development.
L. Godinho (2011)
Cold Spring Harb Protoc 2011, pdb.top119
   Abstract »    Full Text »    PDF »
Biological Basis of Therapeutic Lymphangiogenesis.
C. Norrmen, T. Tammela, T. V. Petrova, and K. Alitalo (2011)
Circulation 123, 1335-1351
   Full Text »    PDF »
Aplexone targets the HMG-CoA reductase pathway and differentially regulates arteriovenous angiogenesis.
J. Choi, K. Mouillesseaux, Z. Wang, H. D. G. Fiji, S. S. Kinderman, G. W. Otto, R. Geisler, O. Kwon, and J.-N. Chen (2011)
Development 138, 1173-1181
   Abstract »    Full Text »    PDF »
The role of meis1 in primitive and definitive hematopoiesis during zebrafish development.
A. Cvejic, J. Serbanovic-Canic, D. L. Stemple, and W. H. Ouwehand (2011)
Haematologica 96, 190-198
   Abstract »    Full Text »    PDF »
Eph/ephrin molecules--a hub for signaling and endocytosis.
M. E. Pitulescu and R. H. Adams (2010)
Genes & Dev. 24, 2480-2492
   Abstract »    Full Text »    PDF »
Hey2 acts upstream of Notch in hematopoietic stem cell specification in zebrafish embryos.
J. M. Rowlinson and M. Gering (2010)
Blood 116, 2046-2056
   Abstract »    Full Text »    PDF »
Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis.
Y. Wang, M. S. Kaiser, J. D. Larson, A. Nasevicius, K. J. Clark, S. A. Wadman, S. E. Roberg-Perez, S. C. Ekker, P. B. Hackett, M. McGrail, et al. (2010)
Development 137, 3119-3128
   Abstract »    Full Text »    PDF »
Role of Delta-like-4/Notch in the Formation and Wiring of the Lymphatic Network in Zebrafish.
I. Geudens, R. Herpers, K. Hermans, I. Segura, C. Ruiz de Almodovar, J. Bussmann, F. De Smet, W. Vandevelde, B. M. Hogan, A. Siekmann, et al. (2010)
Arterioscler Thromb Vasc Biol 30, 1695-1702
   Abstract »    Full Text »    PDF »
Aorta's Cardinal Secret.
R. Benedito and R. H. Adams (2009)
Science 326, 242-243
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882