Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 326 (5951): 443-445

Copyright © 2009 by the American Association for the Advancement of Science

The Taste of Carbonation

Jayaram Chandrashekar,1 David Yarmolinsky,1 Lars von Buchholtz,2 Yuki Oka,1 William Sly,3 Nicholas J. P. Ryba,2 Charles S. Zuker1,*,{dagger}

Abstract: Carbonated beverages are commonly available and immensely popular, but little is known about the cellular and molecular mechanisms underlying the perception of carbonation in the mouth. In mammals, carbonation elicits both somatosensory and chemosensory responses, including activation of taste neurons. We have identified the cellular and molecular substrates for the taste of carbonation. By targeted genetic ablation and the silencing of synapses in defined populations of taste receptor cells, we demonstrated that the sour-sensing cells act as the taste sensors for carbonation, and showed that carbonic anhydrase 4, a glycosylphosphatidylinositol-anchored enzyme, functions as the principal CO2 taste sensor. Together, these studies reveal the basis of the taste of carbonation as well as the contribution of taste cells in the orosensory response to CO2.

1 Howard Hughes Medical Institute and Departments of Neurobiology and Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
2 National Institute of Dental and Craniofacial Research (NIDCR), Bethesda, MD 20892, USA.
3 Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.

{dagger} To whom correspondence should be addressed. E-mail: cz2195{at}

* Present address: Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Howard Hughes Medical Institute, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.

Interleukin-10 Is Produced by a Specific Subset of Taste Receptor Cells and Critical for Maintaining Structural Integrity of Mouse Taste Buds.
P. Feng, J. Chai, M. Zhou, N. Simon, L. Huang, and H. Wang (2014)
J. Neurosci. 34, 2689-2701
   Abstract »    Full Text »    PDF »
Effect of Carbon Dioxide in Carbonated Drinks on Linguapalatal Swallowing Pressure.
H. Moritaka, M. Kitade, S.-i. Sawamura, T. Takihara, I. Awano, T. Ono, K. Tamine, and K. Hori (2014)
Chem Senses 39, 133-142
   Abstract »    Full Text »    PDF »
Taste Bud Homeostasis in Health, Disease, and Aging.
P. Feng, L. Huang, and H. Wang (2014)
Chem Senses 39, 3-16
   Abstract »    Full Text »    PDF »
A Chemoreceptor That Detects Molecular Carbon Dioxide.
E. S. J. Smith, L. Martinez-Velazquez, and N. Ringstad (2013)
J. Biol. Chem. 288, 37071-37081
   Abstract »    Full Text »    PDF »
Examining the Role of Carbonation and Temperature on Water Swallowing Performance: A Swallowing Reaction-Time Study.
E. Michou, A. Mastan, S. Ahmed, S. Mistry, and S. Hamdy (2012)
Chem Senses 37, 799-807
   Abstract »    Full Text »    PDF »
Elevated Carbon Dioxide Blunts Mammalian cAMP Signaling Dependent on Inositol 1,4,5-Triphosphate Receptor-mediated Ca2+ Release.
Z. C. Cook, M. A. Gray, and M. J. Cann (2012)
J. Biol. Chem. 287, 26291-26301
   Abstract »    Full Text »    PDF »
Targeted Taste Cell-specific Overexpression of Brain-derived Neurotrophic Factor in Adult Taste Buds Elevates Phosphorylated TrkB Protein Levels in Taste Cells, Increases Taste Bud Size, and Promotes Gustatory Innervation.
I. V. Nosrat, R. F. Margolskee, and C. A. Nosrat (2012)
J. Biol. Chem. 287, 16791-16800
   Abstract »    Full Text »    PDF »
Molecular Mechanisms of Acid-Base Sensing by the Kidney.
D. Brown and C. A. Wagner (2012)
J. Am. Soc. Nephrol. 23, 774-780
   Abstract »    Full Text »    PDF »
Mechanisms of Taste Bud Cell Loss after Head and Neck Irradiation.
H. M. Nguyen, M. E. Reyland, and L. A. Barlow (2012)
J. Neurosci. 32, 3474-3484
   Abstract »    Full Text »    PDF »
Receptor for Activated C Kinase 1 (RACK1) Inhibits Function of Transient Receptor Potential (TRP)-type Channel Pkd2L1 through Physical Interaction.
J. Yang, Q. Wang, W. Zheng, J. Tuli, Q. Li, Y. Wu, S. Hussein, X.-Q. Dai, S. Shafiei, X.-G. Li, et al. (2012)
J. Biol. Chem. 287, 6551-6561
   Abstract »    Full Text »    PDF »
Redefining the components of central CO2 chemosensitivity - towards a better understanding of mechanism.
R. T. R. Huckstepp and N. Dale (2011)
J. Physiol. 589, 5561-5579
   Abstract »    Full Text »    PDF »
Comparison of the Orthonasal and Retronasal Detection Thresholds for Carbon Dioxide in Humans.
J. Melzner, T. Bitter, O. Guntinas-Lichius, R. Gottschall, M. Walther, and H. Gudziol (2011)
Chem Senses 36, 435-441
   Abstract »    Full Text »    PDF »
Involvement of NADPH-Dependent and cAMP-PKA Sensitive H+ Channels in the Chorda Tympani Nerve Responses to Strong Acids.
J. A. DeSimone, T.-H. T. Phan, G. L. Heck, Z. Ren, J. Coleman, S. Mummalaneni, P. Melone, and V. Lyall (2011)
Chem Senses 36, 389-403
   Abstract »    Full Text »    PDF »
The K+-H+ Exchanger, Nigericin, Modulates Taste Cell pH and Chorda Tympani Taste Nerve Responses to Acidic Stimuli.
G. R. Sturz, T.-H. T. Phan, S. Mummalaneni, Z. Ren, J. A. DeSimone, and V. Lyall (2011)
Chem Senses 36, 375-388
   Abstract »    Full Text »    PDF »
Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell.
S. Xue, H. Hu, A. Ries, E. Merilo, H. Kollist, and J. I. Schroeder (2011)
EMBO J. 30, 1645-1658
   Abstract »    Full Text »    PDF »
Regulation of gene expression by carbon dioxide.
C. T. Taylor and E. P. Cummins (2011)
J. Physiol. 589, 797-803
   Abstract »    Full Text »    PDF »
A proton current drives action potentials in genetically identified sour taste cells.
R. B. Chang, H. Waters, and E. R. Liman (2010)
PNAS 107, 22320-22325
   Abstract »    Full Text »    PDF »
TRPA1 Is a Component of the Nociceptive Response to CO2.
Y. Y. Wang, R. B. Chang, and E. R. Liman (2010)
J. Neurosci. 30, 12958-12963
   Abstract »    Full Text »    PDF »
Taste Function in Mice with a Targeted Mutation of the Pkd1l3 Gene.
T. M. Nelson, N. D. LopezJimenez, L. Tessarollo, M. Inoue, A. A. Bachmanov, and S. L. Sullivan (2010)
Chem Senses 35, 565-577
   Abstract »    Full Text »    PDF »
The Search for Mechanisms Underlying the Sour Taste Evoked by Acids Continues.
C. D. Dotson (2010)
Chem Senses 35, 545-547
   Abstract »    Full Text »    PDF »
Review series: The cell biology of taste.
N. Chaudhari and S. D. Roper (2010)
J. Cell Biol. 190, 285-296
   Abstract »    Full Text »    PDF »
Highlights From The Literature.
Physiology 25, 3-7
   Full Text »    PDF »
CO2mmon Sense.
W. B. Frommer (2010)
Science 327, 275-276
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882