Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 326 (5953): 718-721

Copyright © 2009 by the American Association for the Advancement of Science

Control of Iron Homeostasis by an Iron-Regulated Ubiquitin Ligase

Ajay A. Vashisht,1 Kimberly B. Zumbrennen,2 Xinhua Huang,1 David N. Powers,1 Armando Durazo,3 Dahui Sun,4 Nimesh Bhaskaran,5 Anja Persson,6 Mathias Uhlen,6 Olle Sangfelt,5 Charles Spruck,4 Elizabeth A. Leibold,2 James A. Wohlschlegel1,*

Abstract: Eukaryotic cells require iron for survival and have developed regulatory mechanisms for maintaining appropriate intracellular iron concentrations. The degradation of iron regulatory protein 2 (IRP2) in iron-replete cells is a key event in this pathway, but the E3 ubiquitin ligase responsible for its proteolysis has remained elusive. We found that a SKP1-CUL1-FBXL5 ubiquitin ligase protein complex associates with and promotes the iron-dependent ubiquitination and degradation of IRP2. The F-box substrate adaptor protein FBXL5 was degraded upon iron and oxygen depletion in a process that required an iron-binding hemerythrin-like domain in its N terminus. Thus, iron homeostasis is regulated by a proteolytic pathway that couples IRP2 degradation to intracellular iron levels through the stability and activity of FBXL5.

1 Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
2 Departments of Medicine and Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
3 Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
4 Sidney Kimmel Cancer Center, San Diego, CA 92121, USA.
5 Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Hospital, SE-171 76 Stockholm, Sweden.
6 School of Biotechnology, Department of Proteomics, Royal Institute of Technology/AlbaNova, SE-106 91 Stockholm, Sweden.

* To whom correspondence should be addressed. E-mail: jwohl{at}mednet.ucla.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria.
J. Chung, S. A. Anderson, B. Gwynn, K. M. Deck, M. J. Chen, N. B. Langer, G. C. Shaw, N. C. Huston, L. F. Boyer, S. Datta, et al. (2014)
J. Biol. Chem. 289, 7835-7843
   Abstract »    Full Text »    PDF »
Nuclear ubiquitination by FBXL5 modulates Snail1 DNA binding and stability.
R. Vinas-Castells, A. Frias, E. Robles-Lanuza, K. Zhang, G. D. Longmore, A. Garcia de Herreros, and V. M. Diaz (2014)
Nucleic Acids Res. 42, 1079-1094
   Abstract »    Full Text »    PDF »
Substrate Binding Promotes Formation of the Skp1-Cul1-Fbxl3 (SCFFbxl3) Protein Complex.
K. Yumimoto, T. Muneoka, T. Tsuboi, and K. I. Nakayama (2013)
J. Biol. Chem. 288, 32766-32776
   Abstract »    Full Text »    PDF »
Cks1 Enhances Transcription Efficiency at the GAL1 Locus by Linking the Paf1 Complex to the 19S Proteasome.
Y.-R. Pan, M. Sun, J. Wohlschlegel, and S. I. Reed (2013)
Eukaryot. Cell 12, 1192-1201
   Abstract »    Full Text »    PDF »
IRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2{alpha} mRNA translation.
N. Wilkinson and K. Pantopoulos (2013)
Blood 122, 1658-1668
   Abstract »    Full Text »    PDF »
The gut in iron homeostasis: role of HIF-2 under normal and pathological conditions.
M. Mastrogiannaki, P. Matak, and C. Peyssonnaux (2013)
Blood 122, 885-892
   Abstract »    Full Text »    PDF »
A Broad Genomic Survey Reveals Multiple Origins and Frequent Losses in the Evolution of Respiratory Hemerythrins and Hemocyanins.
J. M. Martin-Duran, A. de Mendoza, A. Sebe-Pedros, I. Ruiz-Trillo, and A. Hejnol (2013)
Genome Biol Evol 5, 1435-1442
   Abstract »    Full Text »    PDF »
Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation.
P. Haunhorst, E.-M. Hanschmann, L. Brautigam, O. Stehling, B. Hoffmann, U. Muhlenhoff, R. Lill, C. Berndt, and C. H. Lillig (2013)
Mol. Biol. Cell 24, 1895-1903
   Abstract »    Full Text »    PDF »
Negative Feedback Regulation of the Yeast Cth1 and Cth2 mRNA Binding Proteins Is Required for Adaptation to Iron Deficiency and Iron Supplementation.
M. Martinez-Pastor, S. V. Vergara, S. Puig, and D. J. Thiele (2013)
Mol. Cell. Biol. 33, 2178-2187
   Abstract »    Full Text »    PDF »
F-box and Leucine-rich Repeat Protein 5 (FBXL5) Is Required for Maintenance of Cellular and Systemic Iron Homeostasis.
J. C. Ruiz, S. D. Walker, S. A. Anderson, R. S. Eisenstein, and R. K. Bruick (2013)
J. Biol. Chem. 288, 552-560
   Abstract »    Full Text »    PDF »
Understanding Cullin-RING E3 Biology through Proteomics-based Substrate Identification.
J. W. Harper and M.-K. M. Tan (2012)
Mol. Cell. Proteomics 11, 1541-1550
   Abstract »    Full Text »    PDF »
Characterizing Ubiquitination Sites by Peptide-based Immunoaffinity Enrichment.
D. Bustos, C. E. Bakalarski, Y. Yang, J. Peng, and D. S. Kirkpatrick (2012)
Mol. Cell. Proteomics 11, 1529-1540
   Abstract »    Full Text »    PDF »
Voltage-dependent Anion Channels (VDACs) Recruit Parkin to Defective Mitochondria to Promote Mitochondrial Autophagy.
Y. Sun, A. A. Vashisht, J. Tchieu, J. A. Wohlschlegel, and L. Dreier (2012)
J. Biol. Chem. 287, 40652-40660
   Abstract »    Full Text »    PDF »
Systems and Trans-System Level Analysis Identifies Conserved Iron Deficiency Responses in the Plant Lineage.
E. I. Urzica, D. Casero, H. Yamasaki, S. I. Hsieh, L. N. Adler, S. J. Karpowicz, C. E. Blaby-Haas, S. G. Clarke, J. A. Loo, M. Pellegrini, et al. (2012)
PLANT CELL 24, 3921-3948
   Abstract »    Full Text »    PDF »
MMS19 Assembles Iron-Sulfur Proteins Required for DNA Metabolism and Genomic Integrity.
O. Stehling, A. A. Vashisht, J. Mascarenhas, Z. O. Jonsson, T. Sharma, D. J. A. Netz, A. J. Pierik, J. A. Wohlschlegel, and R. Lill (2012)
Science 337, 195-199
   Abstract »    Full Text »    PDF »
Hemerythrin-like Domain within F-box and Leucine-rich Repeat Protein 5 (FBXL5) Communicates Cellular Iron and Oxygen Availability by Distinct Mechanisms.
S. Chollangi, J. W. Thompson, J. C. Ruiz, K. H. Gardner, and R. K. Bruick (2012)
J. Biol. Chem. 287, 23710-23717
   Abstract »    Full Text »    PDF »
Iron sensing and signalling.
R. Evstatiev and C. Gasche (2012)
Gut 61, 933-952
   Abstract »    Full Text »    PDF »
Fe2+ binds iron responsive element-RNA, selectively changing protein-binding affinities and regulating mRNA repression and activation.
J. Ma, S. Haldar, M. A. Khan, S. D. Sharma, W. C. Merrick, E. C. Theil, and D. J. Goss (2012)
PNAS 109, 8417-8422
   Abstract »    Full Text »    PDF »
Iron Metabolism: Interactions with Normal and Disordered Erythropoiesis.
T. Ganz and E. Nemeth (2012)
Cold Spring Harb Perspect Med 2, a011668
   Abstract »    Full Text »    PDF »
Structural and Molecular Characterization of Iron-sensing Hemerythrin-like Domain within F-box and Leucine-rich Repeat Protein 5 (FBXL5).
J. W. Thompson, A. A. Salahudeen, S. Chollangi, J. C. Ruiz, C. A. Brautigam, T. M. Makris, J. D. Lipscomb, D. R. Tomchick, and R. K. Bruick (2012)
J. Biol. Chem. 287, 7357-7365
   Abstract »    Full Text »    PDF »
Iron regulatory protein-1 and -2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins.
M. Sanchez, B. Galy, B. Schwanhaeusser, J. Blake, T. Bahr-Ivacevic, V. Benes, M. Selbach, M. U. Muckenthaler, and M. W. Hentze (2011)
Blood 118, e168-e179
   Abstract »    Full Text »    PDF »
Hypoxia Inducible Factor-2{alpha} Is Translationally Repressed in Response to Dietary Iron Deficiency in Sprague-Dawley Rats.
M. R. Davis, K. M. Shawron, E. Rendina, S. K. Peterson, E. A. Lucas, B. J. Smith, and S. L. Clarke (2011)
J. Nutr. 141, 1590-1596
   Abstract »    Full Text »    PDF »
Iron Regulatory Protein 2 Turnover through a Nonproteasomal Pathway.
A. H. K. Chang, J. Jeong, and R. L. Levine (2011)
J. Biol. Chem. 286, 23698-23707
   Abstract »    Full Text »    PDF »
Iron Regulatory Protein 1 Outcompetes Iron Regulatory Protein 2 in Regulating Cellular Iron Homeostasis in Response to Nitric Oxide.
A. Stys, B. Galy, R. R. Starzynski, E. Smuda, J.-C. Drapier, P. Lipinski, and C. Bouton (2011)
J. Biol. Chem. 286, 22846-22854
   Abstract »    Full Text »    PDF »
Any old iron?.
C. M. Morris (2011)
Brain 134, 924-927
   Full Text »    PDF »
Iron and Porphyrin Trafficking in Heme Biogenesis.
I. J. Schultz, C. Chen, B. H. Paw, and I. Hamza (2010)
J. Biol. Chem. 285, 26753-26759
   Abstract »    Full Text »    PDF »
Abscisic Acid Increases Arabidopsis ABI5 Transcription Factor Levels by Promoting KEG E3 Ligase Self-Ubiquitination and Proteasomal Degradation.
H. Liu and S. L. Stone (2010)
PLANT CELL 22, 2630-2641
   Abstract »    Full Text »    PDF »
Hypoxic regulation of erythropoiesis and iron metabolism.
V. H. Haase (2010)
Am J Physiol Renal Physiol 299, F1-F13
   Abstract »    Full Text »    PDF »
Highlights From The Literature.
(2010)
Physiology 25, 3-7
   Full Text »    PDF »
An Ancient Gauge for Iron.
T. A. Rouault (2009)
Science 326, 676-677
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882