Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 326 (5953): 722-726

Copyright © 2009 by the American Association for the Advancement of Science

An E3 Ligase Possessing an Iron-Responsive Hemerythrin Domain Is a Regulator of Iron Homeostasis

Ameen A. Salahudeen,* Joel W. Thompson,* Julio C. Ruiz, He-Wen Ma, Lisa N. Kinch, Qiming Li, Nick V. Grishin, Richard K. Bruick{dagger}

Abstract: Cellular iron homeostasis is maintained by the coordinate posttranscriptional regulation of genes responsible for iron uptake, release, use, and storage through the actions of the iron regulatory proteins IRP1 and IRP2. However, the manner in which iron levels are sensed to affect IRP2 activity is poorly understood. We found that an E3 ubiquitin ligase complex containing the FBXL5 protein targets IRP2 for proteasomal degradation. The stability of FBXL5 itself was regulated, accumulating under iron- and oxygen-replete conditions and degraded upon iron depletion. FBXL5 contains an iron- and oxygen-binding hemerythrin domain that acted as a ligand-dependent regulatory switch mediating FBXL5’s differential stability. These observations suggest a mechanistic link between iron sensing via the FBXL5 hemerythrin domain, IRP2 regulation, and cellular responses to maintain mammalian iron homeostasis.

Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: richard.bruick{at}

Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria.
J. Chung, S. A. Anderson, B. Gwynn, K. M. Deck, M. J. Chen, N. B. Langer, G. C. Shaw, N. C. Huston, L. F. Boyer, S. Datta, et al. (2014)
J. Biol. Chem. 289, 7835-7843
   Abstract »    Full Text »    PDF »
Nuclear ubiquitination by FBXL5 modulates Snail1 DNA binding and stability.
R. Vinas-Castells, A. Frias, E. Robles-Lanuza, K. Zhang, G. D. Longmore, A. Garcia de Herreros, and V. M. Diaz (2014)
Nucleic Acids Res. 42, 1079-1094
   Abstract »    Full Text »    PDF »
Substrate Binding Promotes Formation of the Skp1-Cul1-Fbxl3 (SCFFbxl3) Protein Complex.
K. Yumimoto, T. Muneoka, T. Tsuboi, and K. I. Nakayama (2013)
J. Biol. Chem. 288, 32766-32776
   Abstract »    Full Text »    PDF »
IRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2{alpha} mRNA translation.
N. Wilkinson and K. Pantopoulos (2013)
Blood 122, 1658-1668
   Abstract »    Full Text »    PDF »
A Broad Genomic Survey Reveals Multiple Origins and Frequent Losses in the Evolution of Respiratory Hemerythrins and Hemocyanins.
J. M. Martin-Duran, A. de Mendoza, A. Sebe-Pedros, I. Ruiz-Trillo, and A. Hejnol (2013)
Genome Biol Evol 5, 1435-1442
   Abstract »    Full Text »    PDF »
Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation.
P. Haunhorst, E.-M. Hanschmann, L. Brautigam, O. Stehling, B. Hoffmann, U. Muhlenhoff, R. Lill, C. Berndt, and C. H. Lillig (2013)
Mol. Biol. Cell 24, 1895-1903
   Abstract »    Full Text »    PDF »
Negative Feedback Regulation of the Yeast Cth1 and Cth2 mRNA Binding Proteins Is Required for Adaptation to Iron Deficiency and Iron Supplementation.
M. Martinez-Pastor, S. V. Vergara, S. Puig, and D. J. Thiele (2013)
Mol. Cell. Biol. 33, 2178-2187
   Abstract »    Full Text »    PDF »
F-box and Leucine-rich Repeat Protein 5 (FBXL5) Is Required for Maintenance of Cellular and Systemic Iron Homeostasis.
J. C. Ruiz, S. D. Walker, S. A. Anderson, R. S. Eisenstein, and R. K. Bruick (2013)
J. Biol. Chem. 288, 552-560
   Abstract »    Full Text »    PDF »
Understanding Cullin-RING E3 Biology through Proteomics-based Substrate Identification.
J. W. Harper and M.-K. M. Tan (2012)
Mol. Cell. Proteomics 11, 1541-1550
   Abstract »    Full Text »    PDF »
Characterizing Ubiquitination Sites by Peptide-based Immunoaffinity Enrichment.
D. Bustos, C. E. Bakalarski, Y. Yang, J. Peng, and D. S. Kirkpatrick (2012)
Mol. Cell. Proteomics 11, 1529-1540
   Abstract »    Full Text »    PDF »
Systems and Trans-System Level Analysis Identifies Conserved Iron Deficiency Responses in the Plant Lineage.
E. I. Urzica, D. Casero, H. Yamasaki, S. I. Hsieh, L. N. Adler, S. J. Karpowicz, C. E. Blaby-Haas, S. G. Clarke, J. A. Loo, M. Pellegrini, et al. (2012)
PLANT CELL 24, 3921-3948
   Abstract »    Full Text »    PDF »
Hemerythrin-like Domain within F-box and Leucine-rich Repeat Protein 5 (FBXL5) Communicates Cellular Iron and Oxygen Availability by Distinct Mechanisms.
S. Chollangi, J. W. Thompson, J. C. Ruiz, K. H. Gardner, and R. K. Bruick (2012)
J. Biol. Chem. 287, 23710-23717
   Abstract »    Full Text »    PDF »
Iron sensing and signalling.
R. Evstatiev and C. Gasche (2012)
Gut 61, 933-952
   Abstract »    Full Text »    PDF »
Fe2+ binds iron responsive element-RNA, selectively changing protein-binding affinities and regulating mRNA repression and activation.
J. Ma, S. Haldar, M. A. Khan, S. D. Sharma, W. C. Merrick, E. C. Theil, and D. J. Goss (2012)
PNAS 109, 8417-8422
   Abstract »    Full Text »    PDF »
Iron Metabolism: Interactions with Normal and Disordered Erythropoiesis.
T. Ganz and E. Nemeth (2012)
Cold Spring Harb Perspect Med 2, a011668
   Abstract »    Full Text »    PDF »
Structural and Molecular Characterization of Iron-sensing Hemerythrin-like Domain within F-box and Leucine-rich Repeat Protein 5 (FBXL5).
J. W. Thompson, A. A. Salahudeen, S. Chollangi, J. C. Ruiz, C. A. Brautigam, T. M. Makris, J. D. Lipscomb, D. R. Tomchick, and R. K. Bruick (2012)
J. Biol. Chem. 287, 7357-7365
   Abstract »    Full Text »    PDF »
Iron regulatory protein-1 and -2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins.
M. Sanchez, B. Galy, B. Schwanhaeusser, J. Blake, T. Bahr-Ivacevic, V. Benes, M. Selbach, M. U. Muckenthaler, and M. W. Hentze (2011)
Blood 118, e168-e179
   Abstract »    Full Text »    PDF »
Hypoxia Inducible Factor-2{alpha} Is Translationally Repressed in Response to Dietary Iron Deficiency in Sprague-Dawley Rats.
M. R. Davis, K. M. Shawron, E. Rendina, S. K. Peterson, E. A. Lucas, B. J. Smith, and S. L. Clarke (2011)
J. Nutr. 141, 1590-1596
   Abstract »    Full Text »    PDF »
Iron Regulatory Protein 2 Turnover through a Nonproteasomal Pathway.
A. H. K. Chang, J. Jeong, and R. L. Levine (2011)
J. Biol. Chem. 286, 23698-23707
   Abstract »    Full Text »    PDF »
SCFFBXL15 regulates BMP signalling by directing the degradation of HECT-type ubiquitin ligase Smurf1.
Y. Cui, S. He, C. Xing, K. Lu, J. Wang, G. Xing, A. Meng, S. Jia, F. He, and L. Zhang (2011)
EMBO J. 30, 2675-2689
   Abstract »    Full Text »    PDF »
Iron Regulatory Protein 1 Outcompetes Iron Regulatory Protein 2 in Regulating Cellular Iron Homeostasis in Response to Nitric Oxide.
A. Stys, B. Galy, R. R. Starzynski, E. Smuda, J.-C. Drapier, P. Lipinski, and C. Bouton (2011)
J. Biol. Chem. 286, 22846-22854
   Abstract »    Full Text »    PDF »
Any old iron?.
C. M. Morris (2011)
Brain 134, 924-927
   Full Text »    PDF »
Iron and Porphyrin Trafficking in Heme Biogenesis.
I. J. Schultz, C. Chen, B. H. Paw, and I. Hamza (2010)
J. Biol. Chem. 285, 26753-26759
   Abstract »    Full Text »    PDF »
Abscisic Acid Increases Arabidopsis ABI5 Transcription Factor Levels by Promoting KEG E3 Ligase Self-Ubiquitination and Proteasomal Degradation.
H. Liu and S. L. Stone (2010)
PLANT CELL 22, 2630-2641
   Abstract »    Full Text »    PDF »
Hypoxic regulation of erythropoiesis and iron metabolism.
V. H. Haase (2010)
Am J Physiol Renal Physiol 299, F1-F13
   Abstract »    Full Text »    PDF »
Highlights From The Literature.
Physiology 25, 3-7
   Full Text »    PDF »
An Ancient Gauge for Iron.
T. A. Rouault (2009)
Science 326, 676-677
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882