Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 326 (5956): 1109-1111

Copyright © 2009 by the American Association for the Advancement of Science

A Periplasmic Reducing System Protects Single Cysteine Residues from Oxidation

Matthieu Depuydt,1 Stephen E. Leonard,2 Didier Vertommen,1 Katleen Denoncin,1 Pierre Morsomme,3 Khadija Wahni,4,5 Joris Messens,4,5 Kate S. Carroll,2 Jean-François Collet1,*

Abstract: The thiol group of the amino acid cysteine can be modified to regulate protein activity. The Escherichia coli periplasm is an oxidizing environment in which most cysteine residues are involved in disulfide bonds. However, many periplasmic proteins contain single cysteine residues, which are vulnerable to oxidation to sulfenic acids and then irreversibly modified to sulfinic and sulfonic acids. We discovered that DsbG and DsbC, two thioredoxin-related proteins, control the global sulfenic acid content of the periplasm and protect single cysteine residues from oxidation. DsbG interacts with the YbiS protein and, along with DsbC, regulates oxidation of its catalytic cysteine residue. Thus, a potentially widespread mechanism controls sulfenic acid modification in the cellular environment.

1 de Duve Institute, Université catholique de Louvain, B-1200 Brussels, Belgium.
2 Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109–1048, USA.
3 Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
4 Department of Molecular and Cellular Interactions, Vlaams Instituut voor Biotechnologie (VIB), Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
5 Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.

* To whom correspondence should be addressed. E-mail: jfcollet{at}

An Extended Active-site Motif Controls the Reactivity of the Thioredoxin Fold.
D. A. I. Mavridou, E. Saridakis, P. Kritsiligkou, E. C. Mozley, S. J. Ferguson, and C. Redfield (2014)
J. Biol. Chem. 289, 8681-8696
   Abstract »    Full Text »    PDF »
The Multidrug Resistance IncA/C Transferable Plasmid Encodes a Novel Domain-swapped Dimeric Protein-disulfide Isomerase.
L. Premkumar, F. Kurth, S. Neyer, M. A. Schembri, and J. L. Martin (2014)
J. Biol. Chem. 289, 2563-2576
   Abstract »    Full Text »    PDF »
Disulfide Bond Oxidoreductase DsbA2 of Legionella pneumophila Exhibits Protein Disulfide Isomerase Activity.
Z. Z. Kpadeh, M. Jameson-Lee, A. J. Yeh, O. Chertihin, I. A. Shumilin, R. Dey, S. R. Day, and P. S. Hoffman (2013)
J. Bacteriol. 195, 1825-1833
   Abstract »    Full Text »    PDF »
A New Family of Membrane Electron Transporters and Its Substrates, Including a New Cell Envelope Peroxiredoxin, Reveal a Broadened Reductive Capacity of the Oxidative Bacterial Cell Envelope.
S.-H. Cho, D. Parsonage, C. Thurston, R. J. Dutton, L. B. Poole, J.-F. Collet, and J. Beckwith (2012)
mBio 3, e00291-11
   Abstract »    Full Text »    PDF »
Peptidoglycan Hydrolases of Escherichia coli.
J. van Heijenoort (2011)
Microbiol. Mol. Biol. Rev. 75, 636-663
   Abstract »    Full Text »    PDF »
TrbB from Conjugative Plasmid F Is a Structurally Distinct Disulfide Isomerase That Requires DsbD for Redox State Maintenance.
C. W. Hemmis, M. Berkmen, M. Eser, and J. F. Schildbach (2011)
J. Bacteriol. 193, 4588-4597
   Abstract »    Full Text »    PDF »
SNO-ing at the Nociceptive Synapse?.
I. Tegeder, R. Scheving, I. Wittig, and G. Geisslinger (2011)
Pharmacol. Rev. 63, 366-389
   Abstract »    Full Text »    PDF »
Crystal Structure of the Outer Membrane Protein RcsF, a New Substrate for the Periplasmic Protein-disulfide Isomerase DsbC.
P. Leverrier, J.-P. Declercq, K. Denoncin, D. Vertommen, A. Hiniker, S.-H. Cho, and J.-F. Collet (2011)
J. Biol. Chem. 286, 16734-16742
   Abstract »    Full Text »    PDF »
Integrating Protein Homeostasis Strategies in Prokaryotes.
A. Mogk, D. Huber, and B. Bukau (2011)
Cold Spring Harb Perspect Biol 3, a004366
   Abstract »    Full Text »    PDF »
The Protein-disulfide Isomerase DsbC Cooperates with SurA and DsbA in the Assembly of the Essential {beta}-Barrel Protein LptD.
K. Denoncin, D. Vertommen, E. Paek, and J.-F. Collet (2010)
J. Biol. Chem. 285, 29425-29433
   Abstract »    Full Text »    PDF »
Plant Thioredoxin CDSP32 Regenerates 1-Cys Methionine Sulfoxide Reductase B Activity through the Direct Reduction of Sulfenic Acid.
L. Tarrago, E. Laugier, M. Zaffagnini, C. H. Marchand, P. Le Marechal, S. D. Lemaire, and P. Rey (2010)
J. Biol. Chem. 285, 14964-14972
   Abstract »    Full Text »    PDF »
Disulfide Bond Formation and Cysteine Exclusion in Gram-positive Bacteria.
R. Daniels, P. Mellroth, A. Bernsel, F. Neiers, S. Normark, G. von Heijne, and B. Henriques-Normark (2010)
J. Biol. Chem. 285, 3300-3309
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882