Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 326 (5957): 1235-1240

Copyright © 2009 by the American Association for the Advancement of Science

Proteome Organization in a Genome-Reduced Bacterium

Sebastian Kühner,1,* Vera van Noort,1,* Matthew J. Betts,1 Alejandra Leo-Macias,1 Claire Batisse,1 Michaela Rode,1 Takuji Yamada,1 Tobias Maier,2 Samuel Bader,1 Pedro Beltran-Alvarez,1 Daniel Castaño-Diez,1 Wei-Hua Chen,1 Damien Devos,1 Marc Güell,2 Tomas Norambuena,3 Ines Racke,1 Vladimir Rybin,1 Alexander Schmidt,4 Eva Yus,2 Ruedi Aebersold,4 Richard Herrmann,5 Bettina Böttcher,1,{dagger} Achilleas S. Frangakis,1 Robert B. Russell,1 Luis Serrano,2,6 Peer Bork,1,{ddagger} Anne-Claude Gavin1,{ddagger}

Abstract: The genome of Mycoplasma pneumoniae is among the smallest found in self-replicating organisms. To study the basic principles of bacterial proteome organization, we used tandem affinity purification–mass spectrometry (TAP-MS) in a proteome-wide screen. The analysis revealed 62 homomultimeric and 116 heteromultimeric soluble protein complexes, of which the majority are novel. About a third of the heteromultimeric complexes show higher levels of proteome organization, including assembly into larger, multiprotein complex entities, suggesting sequential steps in biological processes, and extensive sharing of components, implying protein multifunctionality. Incorporation of structural models for 484 proteins, single-particle electron microscopy, and cellular electron tomograms provided supporting structural details for this proteome organization. The data set provides a blueprint of the minimal cellular machinery required for life.

1 European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
2 Centro Regulacion Genomica–Universidad Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain.
3 Pontificia Universidad Catolica de Chile, Alameda 340, Santiago, Chile.
4 ETH (Eidgenössische Technische Hochschule) Zürich, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland; Faculty of Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland, and Institute for Systems Biology, Seattle, WA 98013, USA.
5 ZMBH (Zentrum für Molekulare Biologie der Universität Heidelberg), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
6 ICREA (Institució Catalana de Recerca i Estudis Avançats), 08010 Barcelona, Spain.

* These authors contributed equally to this work.

{dagger} Present address: University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR.

{ddagger} To whom correspondence should be addressed. E-mail: gavin{at}embl.de (A.-C.G.); bork{at}embl.de (P.B.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome.
T. Glatter, R. B. Schittenhelm, O. Rinner, K. Roguska, A. Wepf, M. A. Junger, K. Kohler, I. Jevtov, H. Choi, A. Schmidt, et al. (2014)
Mol Syst Biol 7, 547
   Abstract »    Full Text »    PDF »
A systems biology tour de force for a near-minimal bacterium.
J. I. Glass, C. A. Hutchison III, H. O. Smith, and J. C. Venter (2014)
Mol Syst Biol 5, 330
   Full Text »    PDF »
A global protein-lipid interactome map.
M. Brehme and M. Vidal (2014)
Mol Syst Biol 6, 443
   Full Text »    PDF »
Transcription start site associated RNAs in bacteria.
E. Yus, M. Guell, A. P. Vivancos, W.-H. Chen, M. Lluch-Senar, J. Delgado, A.-C. Gavin, P. Bork, and L. Serrano (2014)
Mol Syst Biol 8, 585
   Abstract »    Full Text »    PDF »
Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium.
V. van Noort, J. Seebacher, S. Bader, S. Mohammed, I. Vonkova, M. J. Betts, S. Kuhner, R. Kumar, T. Maier, M. O'Flaherty, et al. (2014)
Mol Syst Biol 8, 571
   Abstract »    Full Text »    PDF »
Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling.
J. A. H. Wodke, J. Puchałka, M. Lluch-Senar, J. Marcos, E. Yus, M. Godinho, R. Gutierrez-Gallego, V. A. P. M. dos Santos, L. Serrano, E. Klipp, et al. (2014)
Mol Syst Biol 9, 653
   Abstract »    Full Text »    PDF »
Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs.
V. Godinic-Mikulcic, J. Jaric, B. J. Greber, V. Franke, V. Hodnik, G. Anderluh, N. Ban, and I. Weygand-Durasevic (2014)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
MultitaskProtDB: a database of multitasking proteins.
S. Hernandez, G. Ferragut, I. Amela, J. Perez-Pons, J. Pinol, A. Mozo-Villarias, J. Cedano, and E. Querol (2014)
Nucleic Acids Res. 42, D517-D520
   Abstract »    Full Text »    PDF »
Mapping Condition-Dependent Regulation of Lipid Metabolism in Saccharomyces cerevisiae.
M. C. Jewett, C. T. Workman, I. Nookaew, F. A. Pizarro, E. Agosin, L. I. Hellgren, and J. Nielsen (2013)
g3 3, 1979-1995
   Abstract »    Full Text »    PDF »
Reconstitution of an Active Arginine Deiminase Pathway in Mycoplasma pneumoniae M129.
H. Rechnitzer, S. Rottem, and R. Herrmann (2013)
Infect. Immun. 81, 3742-3749
   Abstract »    Full Text »    PDF »
Integrative approaches for predicting protein function and prioritizing genes for complex phenotypes using protein interaction networks.
X. Ma, T. Chen, and F. Sun (2013)
Brief Bioinform
   Abstract »    Full Text »    PDF »
Implication of Glycerol and Phospholipid Transporters in Mycoplasma pneumoniae Growth and Virulence.
S. Grosshennig, S. R. Schmidl, G. Schmeisky, J. Busse, and J. Stulke (2013)
Infect. Immun. 81, 896-904
   Abstract »    Full Text »    PDF »
Characterization of pyruvate dehydrogenase subunit B and enolase as plasminogen-binding proteins in Mycoplasma pneumoniae.
C. Thomas, E. Jacobs, and R. Dumke (2013)
Microbiology 159, 352-365
   Abstract »    Full Text »    PDF »
Popular Computational Methods to Assess Multiprotein Complexes Derived From Label-Free Affinity Purification and Mass Spectrometry (AP-MS) Experiments.
I. M. Armean, K. S. Lilley, and M. W. B. Trotter (2013)
Mol. Cell. Proteomics 12, 1-13
   Abstract »    Full Text »    PDF »
PrePPI: a structure-informed database of protein-protein interactions.
Q. C. Zhang, D. Petrey, J. I. Garzon, L. Deng, and B. Honig (2013)
Nucleic Acids Res. 41, D828-D833
   Abstract »    Full Text »    PDF »
Genome Reduction Promotes Increase in Protein Functional Complexity in Bacteria.
Y. D. Kelkar and H. Ochman (2013)
Genetics 193, 303-307
   Abstract »    Full Text »    PDF »
Whole Surface Image of Mycoplasma mobile, Suggested by Protein Identification and Immunofluorescence Microscopy.
H. N. Wu and M. Miyata (2012)
J. Bacteriol. 194, 5848-5855
   Abstract »    Full Text »    PDF »
PaxDb, a Database of Protein Abundance Averages Across All Three Domains of Life.
M. Wang, M. Weiss, M. Simonovic, G. Haertinger, S. P. Schrimpf, M. O. Hengartner, and C. von Mering (2012)
Mol. Cell. Proteomics 11, 492-500
   Abstract »    Full Text »    PDF »
Evolution of oligomeric state through geometric coupling of protein interfaces.
T. Perica, C. Chothia, and S. A. Teichmann (2012)
PNAS 109, 8127-8132
   Abstract »    Full Text »    PDF »
Reconfiguring Regulation.
G. Chalancon, K. Kruse, and M. M. Babu (2012)
Science 335, 1050-1051
   Abstract »    Full Text »    PDF »
Joining Forces: Integrating Proteomics and Cross-linking with the Mass Spectrometry of Intact Complexes.
F. Stengel, R. Aebersold, and C. V. Robinson (2012)
Mol. Cell. Proteomics 11, R111.014027
   Abstract »    Full Text »    PDF »
Characterization of NrnA homologs from Mycobacterium tuberculosis and Mycoplasma pneumoniae.
G. Postic, A. Danchin, and U. Mechold (2012)
RNA 18, 155-165
   Abstract »    Full Text »    PDF »
Complete Genome and Proteome of Acholeplasma laidlawii.
V. N. Lazarev, S. A. Levitskii, Y. I. Basovskii, M. M. Chukin, T. A. Akopian, V. V. Vereshchagin, E. S. Kostrjukova, G. Y. Kovaleva, M. D. Kazanov, D. B. Malko, et al. (2011)
J. Bacteriol. 193, 4943-4953
   Abstract »    Full Text »    PDF »
From Water and Ions to Crowded Biomacromolecules: In Vivo Structuring of a Prokaryotic Cell.
J. Spitzer (2011)
Microbiol. Mol. Biol. Rev. 75, 491-506
   Abstract »    Full Text »    PDF »
The minimal genome--a metabolic and environmental comparison.
M. T. DeWall and D. W. Cheng (2011)
Briefings in Functional Genomics 10, 312-315
   Abstract »    Full Text »    PDF »
Perspectives on electron cryo-tomography of vitreous cryo-sections.
J. Pierson, M. Vos, J. R. McIntosh, and P. J. Peters (2011)
Microscopy (Tokyo) 60, S93-S100
   Abstract »    Full Text »    PDF »
The Potential Cost of High-Throughput Proteomics.
F. M. White (2011)
Science Signaling 4, pe8
   Abstract »    Full Text »    PDF »
An Archaeal tRNA-Synthetase Complex that Enhances Aminoacylation under Extreme Conditions.
V. Godinic-Mikulcic, J. Jaric, C. D. Hausmann, M. Ibba, and I. Weygand-Durasevic (2011)
J. Biol. Chem. 286, 3396-3404
   Abstract »    Full Text »    PDF »
Literature curation of protein interactions: measuring agreement across major public databases.
A. L. Turinsky, S. Razick, B. Turner, I. M. Donaldson, and S. J. Wodak (2010)
Database 2010, baq026
   Abstract »    Full Text »    PDF »
Targeted Chromosomal Knockouts in Mycoplasma pneumoniae.
R. Krishnakumar, N. Assad-Garcia, G. A. Benders, Q. Phan, M. G. Montague, and J. I. Glass (2010)
Appl. Envir. Microbiol. 76, 5297-5299
   Abstract »    Full Text »    PDF »
Merging Molecular Electron Microscopy and Mass Spectrometry by Carbon Film-assisted Endoproteinase Digestion.
F. M. Richter, B. Sander, M. M. Golas, H. Stark, and H. Urlaub (2010)
Mol. Cell. Proteomics 9, 1729-1741
   Abstract »    Full Text »    PDF »
Computational Tools for the Interactive Exploration of Proteomic and Structural Data.
J. H. Morris, E. C. Meng, and T. E. Ferrin (2010)
Mol. Cell. Proteomics 9, 1703-1715
   Abstract »    Full Text »    PDF »
Profiling of Protein Interaction Networks of Protein Complexes Using Affinity Purification and Quantitative Mass Spectrometry.
R. M. Kaake, X. Wang, and L. Huang (2010)
Mol. Cell. Proteomics 9, 1650-1665
   Abstract »    Full Text »    PDF »
Excavating the Functional Landscape of Bacterial Cells.
H. Ochman and R. Raghavan (2009)
Science 326, 1200-1201
   Abstract »    Full Text »    PDF »
Impact of Genome Reduction on Bacterial Metabolism and Its Regulation.
E. Yus, T. Maier, K. Michalodimitrakis, V. van Noort, T. Yamada, W.-H. Chen, J. A. H. Wodke, M. Guell, S. Martinez, R. Bourgeois, et al. (2009)
Science 326, 1263-1268
   Abstract »    Full Text »    PDF »
Transcriptome Complexity in a Genome-Reduced Bacterium.
M. Guell, V. van Noort, E. Yus, W.-H. Chen, J. Leigh-Bell, K. Michalodimitrakis, T. Yamada, M. Arumugam, T. Doerks, S. Kuhner, et al. (2009)
Science 326, 1268-1271
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882