Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 326 (5958): 1373-1379

Copyright © 2009 by the American Association for the Advancement of Science

Structural Mechanism of Abscisic Acid Binding and Signaling by Dimeric PYR1

Noriyuki Nishimura,1,* Kenichi Hitomi,2,3,* Andrew S. Arvai,2,* Robert P. Rambo,3,* Chiharu Hitomi,2 Sean R. Cutler,4 Julian I. Schroeder,1 Elizabeth D. Getzoff2,{dagger}

Abstract: The phytohormone abscisic acid (ABA) acts in seed dormancy, plant development, drought tolerance, and adaptive responses to environmental stresses. Structural mechanisms mediating ABA receptor recognition and signaling remain unknown but are essential for understanding and manipulating abiotic stress resistance. Here, we report structures of pyrabactin resistance 1 (PYR1), a prototypical PYR/PYR1-like (PYL)/regulatory component of ABA receptor (RCAR) protein that functions in early ABA signaling. The crystallographic structure reveals an {alpha}/β helix–grip fold and homodimeric assembly, verified in vivo by coimmunoprecipitation. ABA binding within a large internal cavity switches structural motifs distinguishing ABA-free "open-lid" from ABA-bound "closed-lid" conformations. Small-angle x-ray scattering suggests that ABA signals by converting PYR1 to a more compact, symmetric closed-lid dimer. Site-directed PYR1 mutants designed to disrupt hormone binding lose ABA-triggered interactions with type 2C protein phosphatase partners in planta.

1 Division of Biological Sciences, Cell and Developmental Biology Section, University of California at San Diego, La Jolla, CA 92093, USA.
2 Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
3 Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
4 Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California at Riverside, Riverside, CA 92521, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: edg{at}scripps.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Promotion of Enzyme Flexibility by Dephosphorylation and Coupling to the Catalytic Mechanism of a Phosphohexomutase.
Y. Lee, M. T. Villar, A. Artigues, and L. J. Beamer (2014)
J. Biol. Chem. 289, 4674-4682
   Abstract »    Full Text »    PDF »
Stabilization of the Dimeric Birch Pollen Allergen Bet v 1 Impacts Its Immunological Properties.
S. Kofler, C. Ackaert, M. Samonig, C. Asam, P. Briza, J. Horejs-Hoeck, C. Cabrele, F. Ferreira, A. Duschl, C. Huber, et al. (2014)
J. Biol. Chem. 289, 540-551
   Abstract »    Full Text »    PDF »
FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis.
R. Waadt, K. Hitomi, N. Nishimura, C. Hitomi, S. R. Adams, E. D. Getzoff, and J. I. Schroeder (2014)
eLife Sci 3, e01739
   Abstract »    Full Text »    PDF »
Abscisic acid dynamics in roots detected with genetically encoded FRET sensors.
A. M. Jones, J. A. Danielson, S. N. ManojKumar, V. Lanquar, G. Grossmann, and W. B. Frommer (2014)
eLife Sci 3, e01741
   Abstract »    Full Text »    PDF »
Regulation of Drought Tolerance by the F-Box Protein MAX2 in Arabidopsis.
Q. Bu, T. Lv, H. Shen, P. Luong, J. Wang, Z. Wang, Z. Huang, L. Xiao, C. Engineer, T. H. Kim, et al. (2014)
Plant Physiology 164, 424-439
   Abstract »    Full Text »    PDF »
The Basic Leucine Zipper Transcription Factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 Is an Important Transcriptional Regulator of Abscisic Acid-Dependent Grape Berry Ripening Processes.
P. Nicolas, D. Lecourieux, C. Kappel, S. Cluzet, G. Cramer, S. Delrot, and F. Lecourieux (2014)
Plant Physiology 164, 365-383
   Abstract »    Full Text »    PDF »
The Strawberry Pathogenesis-related 10 (PR-10) Fra a Proteins Control Flavonoid Biosynthesis by Binding to Metabolic Intermediates.
A. Casanal, U. Zander, C. Munoz, F. Dupeux, I. Luque, M. A. Botella, W. Schwab, V. Valpuesta, and J. A. Marquez (2013)
J. Biol. Chem. 288, 35322-35332
   Abstract »    Full Text »    PDF »
Going Green: Phytohormone Mimetics for Drought Rescue.
K. Hitomi, E. D. Getzoff, and J. I. Schroeder (2013)
Plant Physiology 163, 1087-1088
   Full Text »    PDF »
Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance.
M. Okamoto, F. C. Peterson, A. Defries, S.-Y. Park, A. Endo, E. Nambara, B. F. Volkman, and S. R. Cutler (2013)
PNAS 110, 12132-12137
   Abstract »    Full Text »    PDF »
Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants.
E. M. Golenberg and N. W. West (2013)
Am. J. Botany 100, 1022-1037
   Abstract »    Full Text »    PDF »
Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening.
H.-f. Jia, D. Lu, J.-h. Sun, C.-l. Li, Y. Xing, L. Qin, and Y.-y. Shen (2013)
J. Exp. Bot. 64, 1677-1687
   Abstract »    Full Text »    PDF »
HONSU, a Protein Phosphatase 2C, Regulates Seed Dormancy by Inhibiting ABA Signaling in Arabidopsis.
W. Kim, Y. Lee, J. Park, N. Lee, and G. Choi (2013)
Plant Cell Physiol. 54, 555-572
   Abstract »    Full Text »    PDF »
FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase.
F. Yu, L. Qian, C. Nibau, Q. Duan, D. Kita, K. Levasseur, X. Li, C. Lu, H. Li, C. Hou, et al. (2012)
PNAS 109, 14693-14698
   Abstract »    Full Text »    PDF »
Unique Drought Resistance Functions of the Highly ABA-Induced Clade A Protein Phosphatase 2Cs.
G. B. Bhaskara, T. T. Nguyen, and P. E. Verslues (2012)
Plant Physiology 160, 379-395
   Abstract »    Full Text »    PDF »
Identification and expression analysis of the Glycine max CYP707A gene family in response to drought and salt stresses.
Y. Zheng, Y. Huang, W. Xian, J. Wang, and H. Liao (2012)
Ann. Bot. 110, 743-756
   Abstract »    Full Text »    PDF »
Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action.
B. Brandt, D. E. Brodsky, S. Xue, J. Negi, K. Iba, J. Kangasjarvi, M. Ghassemian, A. B. Stephan, H. Hu, and J. I. Schroeder (2012)
PNAS 109, 10593-10598
   Abstract »    Full Text »    PDF »
Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis.
X. Yao, W. Xiong, T. Ye, and Y. Wu (2012)
J. Exp. Bot. 63, 2579-2593
   Abstract »    Full Text »    PDF »
Plant UVR8 Photoreceptor Senses UV-B by Tryptophan-Mediated Disruption of Cross-Dimer Salt Bridges.
J. M. Christie, A. S. Arvai, K. J. Baxter, M. Heilmann, A. J. Pratt, A. O'Hara, S. M. Kelly, M. Hothorn, B. O. Smith, K. Hitomi, et al. (2012)
Science 335, 1492-1496
   Abstract »    Full Text »    PDF »
Connections between Sphingosine Kinase and Phospholipase D in the Abscisic Acid Signaling Pathway in Arabidopsis.
L. Guo, G. Mishra, J. E. Markham, M. Li, A. Tawfall, R. Welti, and X. Wang (2012)
J. Biol. Chem. 287, 8286-8296
   Abstract »    Full Text »    PDF »
Pyrabactin, an ABA agonist, induced stomatal closure and changes in signalling components of guard cells in abaxial epidermis of Pisum sativum.
M. R. Puli and A. S. Raghavendra (2012)
J. Exp. Bot. 63, 1349-1356
   Abstract »    Full Text »    PDF »
FIA functions as an early signal component of abscisic acid signal cascade in Vicia faba guard cells.
Y. Sugiyama, M. Uraji, M. Watanabe-Sugimoto, E. Okuma, S. Munemasa, Y. Shimoishi, Y. Nakamura, I. C. Mori, S. Iwai, and Y. Murata (2012)
J. Exp. Bot. 63, 1357-1365
   Abstract »    Full Text »    PDF »
New Technologies for 21st Century Plant Science.
D. W. Ehrhardt and W. B. Frommer (2012)
PLANT CELL 24, 374-394
   Abstract »    Full Text »    PDF »
Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases.
F.-F. Soon, L.-M. Ng, X. E. Zhou, G. M. West, A. Kovach, M. H. E. Tan, K. M. Suino-Powell, Y. He, Y. Xu, M. J. Chalmers, et al. (2012)
Science 335, 85-88
   Abstract »    Full Text »    PDF »
A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth.
H. Kim, H. Hwang, J.-W. Hong, Y.-N. Lee, I. P. Ahn, I. S. Yoon, S.-D. Yoo, S. Lee, S. C. Lee, and B.-G. Kim (2012)
J. Exp. Bot. 63, 1013-1024
   Abstract »    Full Text »    PDF »
Suppression of 9-cis-Epoxycarotenoid Dioxygenase, Which Encodes a Key Enzyme in Abscisic Acid Biosynthesis, Alters Fruit Texture in Transgenic Tomato.
L. Sun, Y. Sun, M. Zhang, L. Wang, J. Ren, M. Cui, Y. Wang, K. Ji, P. Li, Q. Li, et al. (2012)
Plant Physiology 158, 283-298
   Abstract »    Full Text »    PDF »
Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases.
L.-M. Ng, F.-F. Soon, X. E. Zhou, G. M. West, A. Kovach, K. M. Suino-Powell, M. J. Chalmers, J. Li, E.-L. Yong, J.-K. Zhu, et al. (2011)
PNAS 108, 21259-21264
   Abstract »    Full Text »    PDF »
Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation.
A. Mosquna, F. C. Peterson, S.-Y. Park, J. Lozano-Juste, B. F. Volkman, and S. R. Cutler (2011)
PNAS 108, 20838-20843
   Abstract »    Full Text »    PDF »
Action of Natural Abscisic Acid Precursors and Catabolites on Abscisic Acid Receptor Complexes.
M. Kepka, C. L. Benson, V. K. Gonugunta, K. M. Nelson, A. Christmann, E. Grill, and S. R. Abrams (2011)
Plant Physiology 157, 2108-2119
   Abstract »    Full Text »    PDF »
A Brand New START: Abscisic Acid Perception and Transduction in the Guard Cell.
A. Joshi-Saha, C. Valon, and J. Leung (2011)
Science Signaling 4, re4
   Abstract »    Full Text »    PDF »
Identification of an important site for function of the type 2C protein phosphatase ABI2 in abscisic acid signalling in Arabidopsis.
H.-L. Sun, X.-J. Wang, W.-H. Ding, S.-Y. Zhu, R. Zhao, Y.-X. Zhang, Q. Xin, X.-F. Wang, and D.-P. Zhang (2011)
J. Exp. Bot. 62, 5713-5725
   Abstract »    Full Text »    PDF »
Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress.
L. Sun, Y.-P. Wang, P. Chen, J. Ren, K. Ji, Q. Li, P. Li, S.-J. Dai, and P. Leng (2011)
J. Exp. Bot. 62, 5659-5669
   Abstract »    Full Text »    PDF »
A thermodynamic switch modulates abscisic acid receptor sensitivity.
F. Dupeux, J. Santiago, K. Betz, J. Twycross, S.-Y. Park, L. Rodriguez, M. Gonzalez-Guzman, M. R. Jensen, N. Krasnogor, M. Blackledge, et al. (2011)
EMBO J. 30, 4171-4184
   Abstract »    Full Text »    PDF »
FaPYR1 is involved in strawberry fruit ripening.
Y.-m. Chai, H.-f. Jia, C.-l. Li, Q.-h. Dong, and Y.-y. Shen (2011)
J. Exp. Bot. 62, 5079-5089
   Abstract »    Full Text »    PDF »
Achievements and Challenges in Understanding Plant Abiotic Stress Responses and Tolerance.
F. Qin, K. Shinozaki, and K. Yamaguchi-Shinozaki (2011)
Plant Cell Physiol. 52, 1569-1582
   Abstract »    Full Text »    PDF »
Abscisic Acid Signal off the STARTing Block.
A. Joshi-Saha, C. Valon, and J. Leung (2011)
Mol Plant
   Abstract »    Full Text »    PDF »
Modulation of Abscisic Acid Signaling in Vivo by an Engineered Receptor-Insensitive Protein Phosphatase Type 2C Allele.
F. Dupeux, R. Antoni, K. Betz, J. Santiago, M. Gonzalez-Guzman, L. Rodriguez, S. Rubio, S.-Y. Park, S. R. Cutler, P. L. Rodriguez, et al. (2011)
Plant Physiology 156, 106-116
   Abstract »    Full Text »    PDF »
Inducible Gene Expression in Mammals: Plants Add to the Menu.
S. R. Cutler (2011)
Science Signaling 4, pe13
   Abstract »    Full Text »    PDF »
Expression of StMYB1R-1, a Novel Potato Single MYB-Like Domain Transcription Factor, Increases Drought Tolerance.
D. Shin, S.-J. Moon, S. Han, B.-G. Kim, S. R. Park, S.-K. Lee, H.-J. Yoon, H. E. Lee, H.-B. Kwon, D. Baek, et al. (2011)
Plant Physiology 155, 421-432
   Abstract »    Full Text »    PDF »
Molecular Basis of the Core Regulatory Network in ABA Responses: Sensing, Signaling and Transport.
T. Umezawa, K. Nakashima, T. Miyakawa, T. Kuromori, M. Tanokura, K. Shinozaki, and K. Yamaguchi-Shinozaki (2010)
Plant Cell Physiol. 51, 1821-1839
   Abstract »    Full Text »    PDF »
Abscisic Acid Receptors.
K. G. Kline, M. R. Sussman, and A. M. Jones (2010)
Plant Physiology 154, 479-482
   Full Text »    PDF »
Functional Mechanism of the Abscisic Acid Agonist Pyrabactin.
Q. Hao, P. Yin, C. Yan, X. Yuan, W. Li, Z. Zhang, L. Liu, J. Wang, and N. Yan (2010)
J. Biol. Chem. 285, 28946-28952
   Abstract »    Full Text »    PDF »
Single Amino Acid Alteration between Valine and Isoleucine Determines the Distinct Pyrabactin Selectivity by PYL1 and PYL2.
X. Yuan, P. Yin, Q. Hao, C. Yan, J. Wang, and N. Yan (2010)
J. Biol. Chem. 285, 28953-28958
   Abstract »    Full Text »    PDF »
In planta changes in protein phosphorylation induced by the plant hormone abscisic acid.
K. G. Kline, G. A. Barrett-Wilt, and M. R. Sussman (2010)
PNAS 107, 15986-15991
   Abstract »    Full Text »    PDF »
Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid.
S. A. J. Messing, S. B. Gabelli, I. Echeverria, J. T. Vogel, J. C. Guan, B. C. Tan, H. J. Klee, D. R. McCarty, and L. M. Amzel (2010)
PLANT CELL 22, 2970-2980
   Abstract »    Full Text »    PDF »
Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions.
K. E. Hubbard, N. Nishimura, K. Hitomi, E. D. Getzoff, and J. I. Schroeder (2010)
Genes & Dev. 24, 1695-1708
   Abstract »    Full Text »    PDF »
ABA receptors: the START of a new paradigm in phytohormone signalling.
J. P. Klingler, G. Batelli, and J.-K. Zhu (2010)
J. Exp. Bot. 61, 3199-3210
   Abstract »    Full Text »    PDF »
FoXS: a web server for rapid computation and fitting of SAXS profiles.
D. Schneidman-Duhovny, M. Hammel, and A. Sali (2010)
Nucleic Acids Res. 38, W540-W544
   Abstract »    Full Text »    PDF »
The Mg-Chelatase H Subunit of Arabidopsis Antagonizes a Group of WRKY Transcription Repressors to Relieve ABA-Responsive Genes of Inhibition.
Y. Shang, L. Yan, Z.-Q. Liu, Z. Cao, C. Mei, Q. Xin, F.-Q. Wu, X.-F. Wang, S.-Y. Du, T. Jiang, et al. (2010)
PLANT CELL 22, 1909-1935
   Abstract »    Full Text »    PDF »
2009: Signaling Breakthroughs of the Year.
E. M. Adler (2010)
Science Signaling 3, eg1
   Abstract »    Full Text »    PDF »
How Plant Cells Go to Sleep for a Long, Long Time.
M. R. Sussman and G. N. Phillips Jr. (2009)
Science 326, 1356-1357
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882