Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 326 (5959): 1549-1554

Copyright © 2009 by the American Association for the Advancement of Science

MicroRNA-206 Delays ALS Progression and Promotes Regeneration of Neuromuscular Synapses in Mice

Andrew H. Williams,1,* Gregorio Valdez,2,* Viviana Moresi,1 Xiaoxia Qi,1 John McAnally,1 Jeffrey L. Elliott,3 Rhonda Bassel-Duby,1 Joshua R. Sanes,2 Eric N. Olson1,{dagger}

Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by loss of motor neurons, denervation of target muscles, muscle atrophy, and paralysis. Understanding ALS pathogenesis may require a fuller understanding of the bidirectional signaling between motor neurons and skeletal muscle fibers at neuromuscular synapses. Here, we show that a key regulator of this signaling is miR-206, a skeletal muscle–specific microRNA that is dramatically induced in a mouse model of ALS. Mice that are genetically deficient in miR-206 form normal neuromuscular synapses during development, but deficiency of miR-206 in the ALS mouse model accelerates disease progression. miR-206 is required for efficient regeneration of neuromuscular synapses after acute nerve injury, which probably accounts for its salutary effects in ALS. miR-206 mediates these effects at least in part through histone deacetylase 4 and fibroblast growth factor signaling pathways. Thus, miR-206 slows ALS progression by sensing motor neuron injury and promoting the compensatory regeneration of neuromuscular synapses.

1 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
2 Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
3 Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: eric.olson{at}

Converging pathways involving microRNA-206 and the RNA-binding protein KSRP control post-transcriptionally utrophin A expression in skeletal muscle.
A. Amirouche, H. Tadesse, P. Miura, G. Belanger, J. A. Lunde, J. Cote, and B. J. Jasmin (2014)
Nucleic Acids Res. 42, 3982-3997
   Abstract »    Full Text »    PDF »
microRNA-206 in Rat Medial Prefrontal Cortex Regulates BDNF Expression and Alcohol Drinking.
J. D. Tapocik, E. Barbier, M. Flanigan, M. Solomon, A. Pincus, A. Pilling, H. Sun, J. R. Schank, C. King, and M. Heilig (2014)
J. Neurosci. 34, 4581-4588
   Abstract »    Full Text »    PDF »
The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration.
B. K. Dey, K. Pfeifer, and A. Dutta (2014)
Genes & Dev. 28, 491-501
   Abstract »    Full Text »    PDF »
Conditions that promote primary human skeletal myoblast culture and muscle differentiation in vitro.
C. S. Cheng, Y. El-Abd, K. Bui, Y.-E. Hyun, R. H. Hughes, W. E. Kraus, and G. A. Truskey (2014)
Am J Physiol Cell Physiol 306, C385-C395
   Abstract »    Full Text »    PDF »
Concise Review: Skeletal Muscle Stem Cells and Cardiac Lineage: Potential for Heart Repair.
N. Hassan, J. Tchao, and K. Tobita (2014)
Stem Cells Trans Med 3, 183-193
   Abstract »    Full Text »    PDF »
Altered gene expression patterns in muscle ring finger 1 null mice during denervation- and dexamethasone-induced muscle atrophy.
J. D. Furlow, M. L. Watson, D. S. Waddell, E. S. Neff, L. M. Baehr, A. P. Ross, and S. C. Bodine (2013)
Physiol Genomics 45, 1168-1185
   Abstract »    Full Text »    PDF »
RILES, a novel method for temporal analysis of the in vivo regulation of miRNA expression.
S. Ezzine, G. Vassaux, B. Pitard, B. Barteau, J.-M. Malinge, P. Midoux, C. Pichon, and P. Baril (2013)
Nucleic Acids Res. 41, e192
   Abstract »    Full Text »    PDF »
Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training.
A. P. Russell, S. Lamon, H. Boon, S. Wada, I. Guller, E. L. Brown, A. V. Chibalin, J. R. Zierath, R. J. Snow, N. Stepto, et al. (2013)
J. Physiol. 591, 4637-4653
   Abstract »    Full Text »    PDF »
Muscle histone deacetylase 4 upregulation in amyotrophic lateral sclerosis: potential role in reinnervation ability and disease progression.
G. Bruneteau, T. Simonet, S. Bauche, N. Mandjee, E. Malfatti, E. Girard, M.-L. Tanguy, A. Behin, F. Khiami, E. Sariali, et al. (2013)
Brain 136, 2359-2368
   Abstract »    Full Text »    PDF »
Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus.
R. Guth, M. Pinch, and G. A. Unguez (2013)
J. Exp. Biol. 216, 2469-2477
   Abstract »    Full Text »    PDF »
Multimodal Actions of Neural Stem Cells in a Mouse Model of ALS: A Meta-Analysis.
Y. D. Teng, S. C. Benn, S. N. Kalkanis, J. M. Shefner, R. C. Onario, B. Cheng, M. B. Lachyankar, M. Marconi, J. Li, D. Yu, et al. (2012)
Science Translational Medicine 4, 165ra164
   Abstract »    Full Text »    PDF »
Steroid-induced microRNA let-7 acts as a spatio-temporal code for neuronal cell fate in the developing Drosophila brain.
M. M. Kucherenko, J. Barth, A. Fiala, and H. R. Shcherbata (2012)
EMBO J. 31, 4511-4523
   Abstract »    Full Text »    PDF »
Notch3 and Mef2c Proteins Are Mutually Antagonistic via Mkp1 Protein and miR-1/206 MicroRNAs in Differentiating Myoblasts.
J. Gagan, B. K. Dey, R. Layer, Z. Yan, and A. Dutta (2012)
J. Biol. Chem. 287, 40360-40370
   Abstract »    Full Text »    PDF »
miR-26a is required for skeletal muscle differentiation and regeneration in mice.
B. K. Dey, J. Gagan, Z. Yan, and A. Dutta (2012)
Genes & Dev. 26, 2180-2191
   Abstract »    Full Text »    PDF »
MicroRNA-206 Regulates Cell Movements during Zebrafish Gastrulation by Targeting prickle1a and Regulating c-Jun N-Terminal Kinase 2 Phosphorylation.
X. Liu, G. Ning, A. Meng, and Q. Wang (2012)
Mol. Cell. Biol. 32, 2934-2942
   Abstract »    Full Text »    PDF »
No simpler than mammals: axon and dendrite regeneration in Drosophila.
H. Nawabi, K. Zukor, and Z. He (2012)
Genes & Dev. 26, 1509-1514
   Abstract »    Full Text »    PDF »
Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the Akt pathway involving Pten and microRNA bantam.
Y. Song, K. M. Ori-McKenney, Y. Zheng, C. Han, L. Y. Jan, and Y. N. Jan (2012)
Genes & Dev. 26, 1612-1625
   Abstract »    Full Text »    PDF »
miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2.
J. Wei, Y. Shi, L. Zheng, B. Zhou, H. Inose, J. Wang, X. E. Guo, R. Grosschedl, and G. Karsenty (2012)
J. Cell Biol. 197, 509-521
   Abstract »    Full Text »    PDF »
Biglycan Is an Extracellular MuSK Binding Protein Important for Synapse Stability.
A. R. Amenta, H. E. Creely, M. L. T. Mercado, H. Hagiwara, B. A. McKechnie, B. E. Lechner, S. G. Rossi, Q. Wang, R. T. Owens, E. Marrero, et al. (2012)
J. Neurosci. 32, 2324-2334
   Abstract »    Full Text »    PDF »
Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD.
A. Lewis, J. Riddoch-Contreras, S. A. Natanek, A. Donaldson, W. D.-C. Man, J. Moxham, N. S. Hopkinson, M. I. Polkey, and P. R. Kemp (2012)
Thorax 67, 26-34
   Abstract »    Full Text »    PDF »
A Shh/miR-206/BDNF Cascade Coordinates Innervation and Formation of Airway Smooth Muscle.
K. Radzikinas, L. Aven, Z. Jiang, T. Tran, J. Paez-Cortez, K. Boppidi, J. Lu, A. Fine, and X. Ai (2011)
J. Neurosci. 31, 15407-15415
   Abstract »    Full Text »    PDF »
miR-155 Inhibits Expression of the MEF2A Protein to Repress Skeletal Muscle Differentiation.
H. Y. Seok, M. Tatsuguchi, T. E. Callis, A. He, W. T. Pu, and D.-Z. Wang (2011)
J. Biol. Chem. 286, 35339-35346
   Abstract »    Full Text »    PDF »
A comprehensive assessment of the SOD1G93A low-copy transgenic mouse, which models human amyotrophic lateral sclerosis.
A. Acevedo-Arozena, B. Kalmar, S. Essa, T. Ricketts, P. Joyce, R. Kent, C. Rowe, A. Parker, A. Gray, M. Hafezparast, et al. (2011)
Dis. Model. Mech. 4, 686-700
   Abstract »    Full Text »    PDF »
MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis.
K. Goljanek-Whysall, D. Sweetman, M. Abu-Elmagd, E. Chapnik, T. Dalmay, E. Hornstein, and A. Munsterberg (2011)
PNAS 108, 11936-11941
   Abstract »    Full Text »    PDF »
MicroRNAs in Development and Disease.
D. Sayed and M. Abdellatif (2011)
Physiol Rev 91, 827-887
   Abstract »    Full Text »    PDF »
miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors.
S. Crippa, M. Cassano, G. Messina, D. Galli, B. G. Galvez, T. Curk, C. Altomare, F. Ronzoni, J. Toelen, R. Gijsbers, et al. (2011)
J. Cell Biol. 193, 1197-1212
   Abstract »    Full Text »    PDF »
MicroRNA-378 Targets the Myogenic Repressor MyoR during Myoblast Differentiation.
J. Gagan, B. K. Dey, R. Layer, Z. Yan, and A. Dutta (2011)
J. Biol. Chem. 286, 19431-19438
   Abstract »    Full Text »    PDF »
TGF-{beta} Regulates miR-206 and miR-29 to Control Myogenic Differentiation through Regulation of HDAC4.
C. E. Winbanks, B. Wang, C. Beyer, P. Koh, L. White, P. Kantharidis, and P. Gregorevic (2011)
J. Biol. Chem. 286, 13805-13814
   Abstract »    Full Text »    PDF »
The Art of MicroRNA Research.
E. van Rooij (2011)
Circ. Res. 108, 219-234
   Abstract »    Full Text »    PDF »
RISC RNA Sequencing for Context-Specific Identification of In Vivo MicroRNA Targets.
S. J. Matkovich, D. J. Van Booven, W. H. Eschenbacher, and G. W. Dorn II (2011)
Circ. Res. 108, 18-26
   Abstract »    Full Text »    PDF »
miR-206 and -486 Induce Myoblast Differentiation by Downregulating Pax7.
B. K. Dey, J. Gagan, and A. Dutta (2011)
Mol. Cell. Biol. 31, 203-214
   Abstract »    Full Text »    PDF »
MicroRNA expression in maturing murine megakaryocytes.
J. B. Opalinska, A. Bersenev, Z. Zhang, A. A. Schmaier, J. Choi, Y. Yao, J. D'Souza, W. Tong, and M. J. Weiss (2010)
Blood 116, e128-e138
   Abstract »    Full Text »    PDF »
A large genome scan for rare CNVs in amyotrophic lateral sclerosis.
H. M. Blauw, A. Al-Chalabi, P. M. Andersen, P. W. J. van Vught, F. P. Diekstra, M. A. van Es, C. G. J. Saris, E. J. N. Groen, W. van Rheenen, M. Koppers, et al. (2010)
Hum. Mol. Genet. 19, 4091-4099
   Abstract »    Full Text »    PDF »
Analysis of microRNA knockouts in mice.
C. Y. Park, Y. S. Choi, and M. T. McManus (2010)
Hum. Mol. Genet. 19, R169-R175
   Abstract »    Full Text »    PDF »
microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7.
J.-F. Chen, Y. Tao, J. Li, Z. Deng, Z. Yan, X. Xiao, and D.-Z. Wang (2010)
J. Cell Biol. 190, 867-879
   Abstract »    Full Text »    PDF »
The Neuroscientist Comments.
Neuroscientist 16, 330-331
   PDF »
miR-451 protects against erythroid oxidant stress by repressing 14-3-3{zeta}.
D. Yu, C. O. dos Santos, G. Zhao, J. Jiang, J. D. Amigo, E. Khandros, L. C. Dore, Y. Yao, J. D'Souza, Z. Zhang, et al. (2010)
Genes & Dev. 24, 1620-1633
   Abstract »    Full Text »    PDF »
miRNA malfunction causes spinal motor neuron disease.
S. Haramati, E. Chapnik, Y. Sztainberg, R. Eilam, R. Zwang, N. Gershoni, E. McGlinn, P. W. Heiser, A.-M. Wills, I. Wirguin, et al. (2010)
PNAS 107, 13111-13116
   Abstract »    Full Text »    PDF »
Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis.
Y. Sun, Y. Ge, J. Drnevich, Y. Zhao, M. Band, and J. Chen (2010)
J. Cell Biol. 189, 1157-1169
   Abstract »    Full Text »    PDF »
A Reinnervating MicroRNA.
R. H. Brown (2009)
Science 326, 1494-1495
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882