Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 327 (5961): 88-92

Copyright © 2010 by the American Association for the Advancement of Science

O-Mannosyl Phosphorylation of Alpha-Dystroglycan Is Required for Laminin Binding

Takako Yoshida-Moriguchi,1,2,3,4 Liping Yu,5 Stephanie H. Stalnaker,6 Sarah Davis,1,2,3,4 Stefan Kunz,7 Michael Madson,8 Michael B. A. Oldstone,9 Harry Schachter,10 Lance Wells,6 Kevin P. Campbell1,2,3,4,*

Abstract: Alpha-dystroglycan ({alpha}-DG) is a cell-surface glycoprotein that acts as a receptor for both extracellular matrix proteins containing laminin-G domains and certain arenaviruses. Receptor binding is thought to be mediated by a posttranslational modification, and defective binding with laminin underlies a subclass of congenital muscular dystrophy. Using mass spectrometry– and nuclear magnetic resonance (NMR)–based structural analyses, we identified a phosphorylated O-mannosyl glycan on the mucin-like domain of recombinant {alpha}-DG, which was required for laminin binding. We demonstrated that patients with muscle-eye-brain disease and Fukuyama congenital muscular dystrophy, as well as mice with myodystrophy, commonly have defects in a postphosphoryl modification of this phosphorylated O-linked mannose, and that this modification is mediated by the like-acetylglucosaminyltransferase (LARGE) protein. These findings expand our understanding of the mechanisms that underlie congenital muscular dystrophy.

1 Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA.
2 Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA.
3 Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA.
4 Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA.
5 Medical Nuclear Magnetic Resonance Facility, University of Iowa Roy J. and Lucille A. Carver College of Medicine, B291 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA.
6 Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
7 Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland.
8 Bio Logistics, 2416 North Shore Drive, Clear Lake, IA 50428, USA.
9 The Scripps Research Institute, Department of Immunology and Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
10 The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.

* To whom correspondence should be addressed. E-mail: kevin-campbell{at}

The transgenic expression of LARGE exacerbates the muscle phenotype of dystroglycanopathy mice.
C. Whitmore, M. Fernandez-Fuente, H. Booler, C. Parr, M. Kavishwar, A. Ashraf, E. Lacey, J. Kim, R. Terry, M. R. Ackroyd, et al. (2014)
Hum. Mol. Genet. 23, 1842-1855
   Abstract »    Full Text »    PDF »
POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability.
A. von Renesse, M. V. Petkova, S. Lutzkendorf, J. Heinemeyer, E. Gill, C. Hubner, A. von Moers, W. Stenzel, and M. Schuelke (2014)
J. Med. Genet. 51, 275-282
   Abstract »    Full Text »    PDF »
Clinical Features and Molecular Characterization of a Patient With Muscle-Eye-Brain Disease: A Novel Mutation in the POMGNT1 Gene.
M. Raducu, R. P. Cotarelo, R. Simon, A. Camacho, M. Rubio-Fernandez, A. Hernandez-Lain, and J. Cruces (2014)
J Child Neurol 29, 289-294
   Abstract »    Full Text »    PDF »
Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins.
M. B. Vester-Christensen, A. Halim, H. J. Joshi, C. Steentoft, E. P. Bennett, S. B. Levery, S. Y. Vakhrushev, and H. Clausen (2013)
PNAS 110, 21018-21023
   Abstract »    Full Text »    PDF »
HNK-1 sulfotransferase-dependent sulfation regulating laminin-binding glycans occurs in the post-phosphoryl moiety on {alpha}-dystroglycan.
N. Nakagawa, H. Takematsu, and S. Oka (2013)
Glycobiology 23, 1066-1074
   Abstract »    Full Text »    PDF »
Lacto-N-biosidase Encoded by a Novel Gene of Bifidobacterium longum Subspecies longum Shows Unique Substrate Specificity and Requires a Designated Chaperone for Its Active Expression.
H. Sakurama, M. Kiyohara, J. Wada, Y. Honda, M. Yamaguchi, S. Fukiya, A. Yokota, H. Ashida, H. Kumagai, M. Kitaoka, et al. (2013)
J. Biol. Chem. 288, 25194-25206
   Abstract »    Full Text »    PDF »
SGK196 Is a Glycosylation-Specific O-Mannose Kinase Required for Dystroglycan Function.
T. Yoshida-Moriguchi, T. Willer, M. E. Anderson, D. Venzke, T. Whyte, F. Muntoni, H. Lee, S. F. Nelson, L. Yu, and K. P. Campbell (2013)
Science 341, 896-899
   Abstract »    Full Text »    PDF »
Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression.
M. Kanagawa, C.-C. Yu, C. Ito, S.-i. Fukada, M. Hozoji-Inada, T. Chiyo, A. Kuga, M. Matsuo, K. Sato, M. Yamaguchi, et al. (2013)
Hum. Mol. Genet. 22, 3003-3015
   Abstract »    Full Text »    PDF »
Extending the Mannose 6-Phosphate Glycoproteome by High Resolution/Accuracy Mass Spectrometry Analysis of Control and Acid Phosphatase 5-Deficient Mice.
D. E. Sleat, P. Sun, J. A. Wiseman, L. Huang, M. El-Banna, H. Zheng, D. F. Moore, and P. Lobel (2013)
Mol. Cell. Proteomics 12, 1806-1817
   Abstract »    Full Text »    PDF »
Loss of Branched O-Mannosyl Glycans in Astrocytes Accelerates Remyelination.
K. Kanekiyo, K.-i. Inamori, S. Kitazume, K. Sato, J. Maeda, M. Higuchi, Y. Kizuka, H. Korekane, I. Matsuo, K. Honke, et al. (2013)
J. Neurosci. 33, 10037-10047
   Abstract »    Full Text »    PDF »
Missense mutations in {beta}-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome.
K. Buysse, M. Riemersma, G. Powell, J. van Reeuwijk, D. Chitayat, T. Roscioli, E.-J. Kamsteeg, C. van den Elzen, E. van Beusekom, S. Blaser, et al. (2013)
Hum. Mol. Genet. 22, 1746-1754
   Abstract »    Full Text »    PDF »
Deciphering the Glycosylome of Dystroglycanopathies Using Haploid Screens for Lassa Virus Entry.
L. T. Jae, M. Raaben, M. Riemersma, E. van Beusekom, V. A. Blomen, A. Velds, R. M. Kerkhoven, J. E. Carette, H. Topaloglu, P. Meinecke, et al. (2013)
Science 340, 479-483
   Abstract »    Full Text »    PDF »
The O-Mannosylation Pathway: Glycosyltransferases and Proteins Implicated in Congenital Muscular Dystrophy.
L. Wells (2013)
J. Biol. Chem. 288, 6930-6935
   Abstract »    Full Text »    PDF »
Understanding Human Glycosylation Disorders: Biochemistry Leads the Charge.
H. H. Freeze (2013)
J. Biol. Chem. 288, 6936-6945
   Abstract »    Full Text »    PDF »
LARGE2 generates the same xylose- and glucuronic acid-containing glycan structures as LARGE.
A. Ashikov, F. F. Buettner, B. Tiemann, R. Gerardy-Schahn, and H. Bakker (2013)
Glycobiology 23, 303-309
   Abstract »    Full Text »    PDF »
Xylosyl- and glucuronyltransferase functions of LARGE in {alpha}-dystroglycan modification are conserved in LARGE2.
K.-i. Inamori, Y. Hara, T. Willer, M. E. Anderson, Z. Zhu, T. Yoshida-Moriguchi, and K. P. Campbell (2013)
Glycobiology 23, 295-302
   Abstract »    Full Text »    PDF »
Loss of LARGE2 Disrupts Functional Glycosylation of {alpha}-Dystroglycan in Prostate Cancer.
A. K. Esser, M. R. Miller, Q. Huang, M. M. Meier, D. Beltran-Valero de Bernabe, C. S. Stipp, K. P. Campbell, C. F. Lynch, B. J. Smith, M. B. Cohen, et al. (2013)
J. Biol. Chem. 288, 2132-2142
   Abstract »    Full Text »    PDF »
O-Mannose and O-N-acetyl galactosamine glycosylation of mammalian {alpha}-dystroglycan is conserved in a region-specific manner.
A. Gomez Toledo, M. Raducu, J. Cruces, J. Nilsson, A. Halim, G. Larson, U. Ruetschi, and A. Grahn (2012)
Glycobiology 22, 1413-1423
   Abstract »    Full Text »    PDF »
Human Natural Killer-1 Sulfotransferase (HNK-1ST)-induced Sulfate Transfer Regulates Laminin-binding Glycans on {alpha}-Dystroglycan.
N. Nakagawa, H. Manya, T. Toda, T. Endo, and S. Oka (2012)
J. Biol. Chem. 287, 30823-30832
   Abstract »    Full Text »    PDF »
Developmental Expression of the Neuron-specific N-Acetylglucosaminyltransferase Vb (GnT-Vb/IX) and Identification of Its in Vivo Glycan Products in Comparison with Those of Its Paralog, GnT-V.
J. K. Lee, R. T. Matthews, J.-M. Lim, K. Swanier, L. Wells, and J. M. Pierce (2012)
J. Biol. Chem. 287, 28526-28536
   Abstract »    Full Text »    PDF »
High Throughput Screening for Compounds That Alter Muscle Cell Glycosylation Identifies New Role for N-Glycans in Regulating Sarcolemmal Protein Abundance and Laminin Binding.
P. V. Cabrera, M. Pang, J. L. Marshall, R. Kung, S. F. Nelson, S. H. Stalnaker, L. Wells, R. H. Crosbie-Watson, and L. G. Baum (2012)
J. Biol. Chem. 287, 22759-22770
   Abstract »    Full Text »    PDF »
Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration.
J. L. Marshall, J. Holmberg, E. Chou, A. C. Ocampo, J. Oh, J. Lee, A. K. Peter, P. T. Martin, and R. H. Crosbie-Watson (2012)
J. Cell Biol. 197, 1009-1027
   Abstract »    Full Text »    PDF »
D. T. Tran, J.-M. Lim, M. Liu, S. H. Stalnaker, L. Wells, K. G. Ten Hagen, and D. Live (2012)
J. Biol. Chem. 287, 20967-20974
   Abstract »    Full Text »    PDF »
O-Linked N,N'-Diacetyllactosamine (LacdiNAc)-modified Glycans in Extracellular Matrix Glycoproteins Are Specifically Phosphorylated at Subterminal N-Acetylglucosamine.
I. Breloy, S. Pacharra, P. Ottis, D. Bonar, A. Grahn, and F.-G. Hanisch (2012)
J. Biol. Chem. 287, 18275-18286
   Abstract »    Full Text »    PDF »
Glycoproteomic characterization of recombinant mouse {alpha}-dystroglycan.
R. Harrison, P. G. Hitchen, M. Panico, H. R. Morris, D. Mekhaiel, R. J. Pleass, A. Dell, J. E. Hewitt, and S. M. Haslam (2012)
Glycobiology 22, 662-675
   Abstract »    Full Text »    PDF »
Absence of Post-phosphoryl Modification in Dystroglycanopathy Mouse Models and Wild-type Tissues Expressing Non-laminin Binding Form of {alpha}-Dystroglycan.
A. Kuga, M. Kanagawa, A. Sudo, Y. M. Chan, M. Tajiri, H. Manya, Y. Kikkawa, M. Nomizu, K. Kobayashi, T. Endo, et al. (2012)
J. Biol. Chem. 287, 9560-9567
   Abstract »    Full Text »    PDF »
Mislocalization of Fukutin Protein by Disease-causing Missense Mutations Can Be Rescued with Treatments Directed at Folding Amelioration.
M. Tachikawa, M. Kanagawa, C.-C. Yu, K. Kobayashi, and T. Toda (2012)
J. Biol. Chem. 287, 8398-8406
   Abstract »    Full Text »    PDF »
Fer kinase regulates cell migration through {alpha}-dystroglycan glycosylation.
T. Yoneyama, K. Angata, X. Bao, S. Courtneidge, S. K. Chanda, and M. Fukuda (2012)
Mol. Biol. Cell 23, 771-780
   Abstract »    Full Text »    PDF »
Differential glycosylation of {alpha}-dystroglycan and proteins other than {alpha}-dystroglycan by like-glycosyltransferase.
P. Zhang and H. Hu (2012)
Glycobiology 22, 235-247
   Abstract »    Full Text »    PDF »
Dystroglycan Function Requires Xylosyl- and Glucuronyltransferase Activities of LARGE.
K.-i. Inamori, T. Yoshida-Moriguchi, Y. Hara, M. E. Anderson, L. Yu, and K. P. Campbell (2012)
Science 335, 93-96
   Abstract »    Full Text »    PDF »
Like-acetylglucosaminyltransferase (LARGE)-dependent modification of dystroglycan at Thr-317/319 is required for laminin binding and arenavirus infection.
Y. Hara, M. Kanagawa, S. Kunz, T. Yoshida-Moriguchi, J. S. Satz, Y. M. Kobayashi, Z. Zhu, S. J. Burden, M. B. A. Oldstone, and K. P. Campbell (2011)
PNAS 108, 17426-17431
   Abstract »    Full Text »    PDF »
Fukutin-Related Protein Alters the Deposition of Laminin in the Eye and Brain.
M. R. Ackroyd, C. Whitmore, S. Prior, M. Kaluarachchi, M. Nikolic, U. Mayer, F. Muntoni, and S. C. Brown (2011)
J. Neurosci. 31, 12927-12935
   Abstract »    Full Text »    PDF »
The role of dystroglycan in PDGF-BB-dependent migration of activated hepatic stellate cells/myofibroblasts.
G. J. Kastanis, Z. Hernandez-Nazara, N. Nieto, A. R. Rincon-Sanchez, A. Popratiloff, J. A. Dominguez-Rosales, C. G. Lechuga, and M. Rojkind (2011)
Am J Physiol Gastrointest Liver Physiol 301, G464-G474
   Abstract »    Full Text »    PDF »
Golgi Glycosylation and Human Inherited Diseases.
H. H. Freeze and B. G. Ng (2011)
Cold Spring Harb Perspect Biol 3, a005371
   Abstract »    Full Text »    PDF »
Glycomic Analyses of Mouse Models of Congenital Muscular Dystrophy.
S. H. Stalnaker, K. Aoki, J.-M. Lim, M. Porterfield, M. Liu, J. S. Satz, S. Buskirk, Y. Xiong, P. Zhang, K. P. Campbell, et al. (2011)
J. Biol. Chem. 286, 21180-21190
   Abstract »    Full Text »    PDF »
Zebrafish Fukutin family proteins link the unfolded protein response with dystroglycanopathies.
Y.-Y. Lin, R. J. White, S. Torelli, S. Cirak, F. Muntoni, and D. L. Stemple (2011)
Hum. Mol. Genet. 20, 1763-1775
   Abstract »    Full Text »    PDF »
Dystroglycan does not contribute significantly to kidney development or function, in health or after injury.
G. Jarad, J. W. Pippin, S. J. Shankland, J. A. Kreidberg, and J. H. Miner (2011)
Am J Physiol Renal Physiol 300, F811-F820
   Abstract »    Full Text »    PDF »
Basement Membranes: Cell Scaffoldings and Signaling Platforms.
P. D. Yurchenco (2011)
Cold Spring Harb Perspect Biol 3, a004911
   Abstract »    Full Text »    PDF »
Soleus muscle in glycosylation-deficient muscular dystrophy is protected from contraction-induced injury.
J. D. Gumerson, Z. T. Kabaeva, C. S. Davis, J. A. Faulkner, and D. E. Michele (2010)
Am J Physiol Cell Physiol 299, C1430-C1440
   Abstract »    Full Text »    PDF »
VP23R of Infectious Spleen and Kidney Necrosis Virus Mediates Formation of Virus-Mock Basement Membrane To Provide Attaching Sites for Lymphatic Endothelial Cells.
X. Xu, S. Weng, T. Lin, J. Tang, L. Huang, J. Wang, X. Yu, L. Lu, Z. Huang, and J. He (2010)
J. Virol. 84, 11866-11875
   Abstract »    Full Text »    PDF »
Dystroglycan controls signaling of multiple hormones through modulation of STAT5 activity.
D. Leonoudakis, M. Singh, R. Mohajer, P. Mohajer, J. E. Fata, K. P. Campbell, and J. L. Muschler (2010)
J. Cell Sci. 123, 3683-3692
   Abstract »    Full Text »    PDF »
Post-translational Maturation of Dystroglycan Is Necessary for Pikachurin Binding and Ribbon Synaptic Localization.
M. Kanagawa, Y. Omori, S. Sato, K. Kobayashi, Y. Miyagoe-Suzuki, S. Takeda, T. Endo, T. Furukawa, and T. Toda (2010)
J. Biol. Chem. 285, 31208-31216
   Abstract »    Full Text »    PDF »
Characterization of site-specific O-glycan structures within the mucin-like domain of {alpha}-dystroglycan from human skeletal muscle.
J. Nilsson, J. Nilsson, G. Larson, and A. Grahn (2010)
Glycobiology 20, 1160-1169
   Abstract »    Full Text »    PDF »
Site Mapping and Characterization of O-Glycan Structures on {alpha}-Dystroglycan Isolated from Rabbit Skeletal Muscle.
S. H. Stalnaker, S. Hashmi, J.-M. Lim, K. Aoki, M. Porterfield, G. Gutierrez-Sanchez, J. Wheeler, J. M. Ervasti, C. Bergmann, M. Tiemeyer, et al. (2010)
J. Biol. Chem. 285, 24882-24891
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882