Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 327 (5962): 217-220

Copyright © 2010 by the American Association for the Advancement of Science

Overexpression of Alpha2A-Adrenergic Receptors Contributes to Type 2 Diabetes

Anders H. Rosengren,1 Ramunas Jokubka,1,* Damon Tojjar,1,* Charlotte Granhall,1 Ola Hansson,1 Dai-Qing Li,2 Vini Nagaraj,1 Thomas M. Reinbothe,1 Jonatan Tuncel,3 Lena Eliasson,1 Leif Groop,1 Patrik Rorsman,4 Albert Salehi,1 Valeriya Lyssenko,1 Holger Luthman,1 Erik Renström1,{dagger}

Abstract: Several common genetic variations have been associated with type 2 diabetes, but the exact disease mechanisms are still poorly elucidated. Using congenic strains from the diabetic Goto-Kakizaki rat, we identified a 1.4-megabase genomic locus that was linked to impaired insulin granule docking at the plasma membrane and reduced β cell exocytosis. In this locus, Adra2a, encoding the alpha2A-adrenergic receptor [alpha(2A)AR], was significantly overexpressed. Alpha(2A)AR mediates adrenergic suppression of insulin secretion. Pharmacological receptor antagonism, silencing of receptor expression, or blockade of downstream effectors rescued insulin secretion in congenic islets. Furthermore, we identified a single-nucleotide polymorphism in the human ADRA2A gene for which risk allele carriers exhibited overexpression of alpha(2A)AR, reduced insulin secretion, and increased type 2 diabetes risk. Human pancreatic islets from risk allele carriers exhibited reduced granule docking and secreted less insulin in response to glucose; both effects were counteracted by pharmacological alpha(2A)AR antagonists.

1 Lund University Diabetes Centre, Malmö, SE-20502 Malmö, Sweden.
2 Key Laboratory of Hormones and Development, Ministry of Health, China, Tianjin Metabolic Diseases Hospital, Tianjin Medical University, China.
3 Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden.
4 Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: erik.renstrom{at}

Enhanced insulin secretion responsiveness and islet adrenergic desensitization after chronic norepinephrine suppression is discontinued in fetal sheep.
X. Chen, A. S. Green, A. R. Macko, D. T. Yates, A. C. Kelly, and S. W. Limesand (2014)
Am J Physiol Endocrinol Metab 306, E58-E64
   Abstract »    Full Text »    PDF »
"Orphan" Retrogenes in the Human Genome.
J. Ciomborowska, W. Rosikiewicz, D. Szklarczyk, W. Makalowski, and I. Makalowska (2013)
Mol. Biol. Evol. 30, 384-396
   Abstract »    Full Text »    PDF »
Loss of Pulsatile Insulin Secretion: A Factor in the Pathogenesis of Type 2 Diabetes?.
J. Wahren and A. Kallas (2012)
Diabetes 61, 2228-2229
   Full Text »    PDF »
Leucine Stimulates Insulin Secretion via Down-regulation of Surface Expression of Adrenergic {alpha}2A Receptor through the mTOR (Mammalian Target of Rapamycin) Pathway: IMPLICATION IN NEW-ONSET DIABETES IN RENAL TRANSPLANTATION.
J. Yang, M. Dolinger, G. Ritaccio, J. Mazurkiewicz, D. Conti, X. Zhu, and Y. Huang (2012)
J. Biol. Chem. 287, 24795-24806
   Abstract »    Full Text »    PDF »
Reduced Insulin Exocytosis in Human Pancreatic {beta}-Cells With Gene Variants Linked to Type 2 Diabetes.
A. H. Rosengren, M. Braun, T. Mahdi, S. A. Andersson, M. E. Travers, M. Shigeto, E. Zhang, P. Almgren, C. Ladenvall, A. S. Axelsson, et al. (2012)
Diabetes 61, 1726-1733
   Abstract »    Full Text »    PDF »
Evolving insights regarding mechanisms for the inhibition of insulin release by norepinephrine and heterotrimeric G proteins.
S. G. Straub and G. W. G. Sharp (2012)
Am J Physiol Cell Physiol 302, C1687-C1698
   Abstract »    Full Text »    PDF »
Purinergic signalling in the pancreas in health and disease.
G. Burnstock and I. Novak (2012)
J. Endocrinol. 213, 123-141
   Abstract »    Full Text »    PDF »
Age-Related Impairment in Insulin Release: The Essential Role of {beta}2-Adrenergic Receptor.
G. Santulli, A. Lombardi, D. Sorriento, A. Anastasio, C. Del Giudice, P. Formisano, F. Beguinot, B. Trimarco, C. Miele, and G. Iaccarino (2012)
Diabetes 61, 692-701
   Abstract »    Full Text »    PDF »
Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes.
A. H. Olsson, B. T. Yang, E. Hall, J. Taneera, A. Salehi, M. Dekker Nitert, and C. Ling (2011)
Eur. J. Endocrinol. 165, 589-595
   Abstract »    Full Text »    PDF »
Protein Interaction-Based Genome-Wide Analysis of Incident Coronary Heart Disease.
M. K. Jensen, T. H. Pers, P. Dworzynski, C. J. Girman, S. Brunak, and E. B. Rimm (2011)
Circ Cardiovasc Genet 4, 549-556
   Abstract »    Full Text »    PDF »
Genetic Variations in the {alpha}2A-Adrenoreceptor Are Associated With Blood Pressure Response to the Agonist Dexmedetomidine.
D. Kurnik, M. Muszkat, C. Li, G. G. Sofowora, E. A. Friedman, M. Scheinin, A. J. J. Wood, and C. M. Stein (2011)
Circ Cardiovasc Genet 4, 179-187
   Abstract »    Full Text »    PDF »
Genetics of Type 2 Diabetes.
E. Ahlqvist, T. S. Ahluwalia, and L. Groop (2011)
Clin. Chem. 57, 241-254
   Abstract »    Full Text »    PDF »
Adrenergic Signaling Polymorphisms and Their Impact on Cardiovascular Disease.
G. W. Dorn II (2010)
Physiol Rev 90, 1013-1062
   Abstract »    Full Text »    PDF »
{alpha}2A-Adrenergic Receptors in the Genetics, Pathogenesis, and Treatment of Type 2 Diabetes.
S. B. Liggett (2009)
Science Translational Medicine 1, 12ps15
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882