Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 327 (5964): 439-442

Copyright © 2010 by the American Association for the Advancement of Science

Rules for Biologically Inspired Adaptive Network Design

Atsushi Tero,1,2 Seiji Takagi,1 Tetsu Saigusa,3 Kentaro Ito,1 Dan P. Bebber,4 Mark D. Fricker,4 Kenji Yumiki,5 Ryo Kobayashi,5,6 Toshiyuki Nakagaki1,6,*

Abstract: Transport networks are ubiquitous in both social and biological systems. Robust network performance involves a complex trade-off involving cost, transport efficiency, and fault tolerance. Biological networks have been honed by many cycles of evolutionary selection pressure and are likely to yield reasonable solutions to such combinatorial optimization problems. Furthermore, they develop without centralized control and may represent a readily scalable solution for growing networks in general. We show that the slime mold Physarum polycephalum forms networks with comparable efficiency, fault tolerance, and cost to those of real-world infrastructure networks—in this case, the Tokyo rail system. The core mechanisms needed for adaptive network formation can be captured in a biologically inspired mathematical model that may be useful to guide network construction in other domains.

1 Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan.
2 PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama, Japan.
3 Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
4 Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK.
5 Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
6 JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan.

* To whom correspondence should be addressed. E-mail: nakagaki{at}

Algorithms in nature: the convergence of systems biology and computational thinking.
S. Navlakha and Z. Bar-Joseph (2014)
Mol Syst Biol 7, 546
   Abstract »    Full Text »    PDF »
Random network peristalsis in Physarum polycephalum organizes fluid flows across an individual.
K. Alim, G. Amselem, F. Peaudecerf, M. P. Brenner, and A. Pringle (2013)
PNAS 110, 13306-13311
   Abstract »    Full Text »    PDF »
Amoeboid organism uses extracellular secretions to make smart foraging decisions.
C. R. Reid, M. Beekman, T. Latty, and A. Dussutour (2013)
Behav. Ecol. 24, 812-818
   Abstract »    Full Text »    PDF »
Solving the Towers of Hanoi - how an amoeboid organism efficiently constructs transport networks.
C. R. Reid and M. Beekman (2013)
J. Exp. Biol. 216, 1546-1551
   Abstract »    Full Text »    PDF »
Current-reinforced random walks for constructing transport networks.
Q. Ma, A. Johansson, A. Tero, T. Nakagaki, and D. J. T. Sumpter (2012)
J R Soc Interface 10, 20120864
   Abstract »    Full Text »    PDF »
Meso-scale turbulence in living fluids.
H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E. Goldstein, H. Lowen, and J. M. Yeomans (2012)
PNAS 109, 14308-14313
   Abstract »    Full Text »    PDF »
Morphogenesis of an extended phenotype: four-dimensional ant nest architecture.
N. J. Minter, N. R. Franks, and K. A. Robson Brown (2012)
J R Soc Interface 9, 586-595
   Abstract »    Full Text »    PDF »
On emerging nuclear order.
I. Rajapakse and M. Groudine (2011)
J. Cell Biol. 192, 711-721
   Abstract »    Full Text »    PDF »
Speed-accuracy trade-offs during foraging decisions in the acellular slime mould Physarum polycephalum.
T. Latty and M. Beekman (2011)
Proc R Soc B 278, 539-545
   Abstract »    Full Text »    PDF »
A Biological Solution to a Fundamental Distributed Computing Problem.
Y. Afek, N. Alon, O. Barad, E. Hornstein, N. Barkai, and Z. Bar-Joseph (2011)
Science 331, 183-185
   Abstract »    Full Text »    PDF »
Optimisation in a natural system: Argentine ants solve the Towers of Hanoi.
C. R. Reid, D. J. T. Sumpter, and M. Beekman (2011)
J. Exp. Biol. 214, 50-58
   Abstract »    Full Text »    PDF »
Brainless behavior: A myxomycete chooses a balanced diet.
J. T. Bonner (2010)
PNAS 107, 5267-5268
   Full Text »    PDF »
Amoeba-Inspired Network Design.
W. Marwan (2010)
Science 327, 419-420
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882