Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 327 (5964): 466-469

Copyright © 2010 by the American Association for the Advancement of Science

Tuberculous Granuloma Induction via Interaction of a Bacterial Secreted Protein with Host Epithelium

Hannah E. Volkman,1,* Tamara C. Pozos,2,*,{dagger} John Zheng,2 J. Muse Davis,3 John F. Rawls,4,5 Lalita Ramakrishnan6,7,8,{ddagger}

Abstract: Granulomas, organized aggregates of immune cells, are a hallmark of tuberculosis and have traditionally been thought to restrict mycobacterial growth. However, analysis of Mycobacterium marinum in zebrafish has shown that the early granuloma facilitates mycobacterial growth; uninfected macrophages are recruited to the granuloma where they are productively infected by M. marinum. Here, we identified the molecular mechanism by which mycobacteria induce granulomas: The bacterial secreted protein 6-kD early secreted antigenic target (ESAT-6), which has long been implicated in virulence, induced matrix metalloproteinase–9 (MMP9) in epithelial cells neighboring infected macrophages. MMP9 enhanced recruitment of macrophages, which contributed to nascent granuloma maturation and bacterial growth. Disruption of MMP9 function attenuated granuloma formation and bacterial growth. Thus, interception of epithelial MMP9 production could hold promise as a host-targeting tuberculosis therapy.

1 Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98155, USA.
2 Department of Pediatrics, University of Washington, Seattle, WA 98155, USA.
3 Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA 30322, USA.
4 Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
5 Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA.
6 Department of Microbiology, University of Washington, Seattle, WA 98155, USA.
7 Department of Medicine, University of Washington, Seattle, WA 98155, USA.
8 Department of Immunology, University of Washington, Seattle, WA 98155, USA.

* These authors contributed equally to this work.

{dagger} Present address: Pediatric Infectious Diseases and Immunology, Children's Hospitals and Clinics of Minnesota, St. Paul, MN 55102, USA.

{ddagger} To whom correspondence should be addressed. E-mail: lalitar{at}u.washington.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
CD4+ T Cells: Guardians of the Phagosome.
N. J. Tubo and M. K. Jenkins (2014)
Clin. Microbiol. Rev. 27, 200-213
   Abstract »    Full Text »    PDF »
Protective CD4 T Cells Targeting Cryptic Epitopes of Mycobacterium tuberculosis Resist Infection-Driven Terminal Differentiation.
J. S. Woodworth, C. S. Aagaard, P. R. Hansen, J. P. Cassidy, E. M. Agger, and P. Andersen (2014)
J. Immunol. 192, 3247-3258
   Abstract »    Full Text »    PDF »
Modeling Mycobacterium tuberculosis early granuloma formation in experimental human lung tissue.
V. R. Parasa, M. J. Rahman, A. T. Ngyuen Hoang, M. Svensson, S. Brighenti, and M. Lerm (2014)
Dis. Model. Mech. 7, 281-288
   Abstract »    Full Text »    PDF »
Regulation of matrix metalloproteinase-1, -3, and -9 in Mycobacterium tuberculosis-dependent respiratory networks by the rapamycin-sensitive PI3K/p70S6K cascade.
S. Singh, L. Saraiva, P. T. G. Elkington, and J. S. Friedland (2014)
FASEB J 28, 85-93
   Abstract »    Full Text »    PDF »
Host-Directed Therapeutics for Tuberculosis: Can We Harness the Host?.
T. R. Hawn, A. I. Matheson, S. N. Maley, and O. Vandal (2013)
Microbiol. Mol. Biol. Rev. 77, 608-627
   Abstract »    Full Text »    PDF »
Early Secreted Antigenic Target of 6 kDa (ESAT-6) Protein of Mycobacterium tuberculosis Induces Interleukin-8 (IL-8) Expression in Lung Epithelial Cells via Protein Kinase Signaling and Reactive Oxygen Species.
V. Boggaram, K. R. Gottipati, X. Wang, and B. Samten (2013)
J. Biol. Chem. 288, 25500-25511
   Abstract »    Full Text »    PDF »
Antimicrobial peptide elicitors: New hope for the post-antibiotic era.
E. P. M. de Oca (2013)
Innate Immunity 19, 227-241
   Abstract »    Full Text »    PDF »
Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system.
M. van der Vaart, J. J. van Soest, H. P. Spaink, and A. H. Meijer (2013)
Dis. Model. Mech. 6, 841-854
   Abstract »    Full Text »    PDF »
Mycobacterial Trehalose Dimycolate Reprograms Macrophage Global Gene Expression and Activates Matrix Metalloproteinases.
K. Sakamoto, M. J. Kim, E. R. Rhoades, R. E. Allavena, S. Ehrt, H. C. Wainwright, D. G. Russell, and K. H. Rohde (2013)
Infect. Immun. 81, 764-776
   Abstract »    Full Text »    PDF »
Prison Break: Pathogens' Strategies To Egress from Host Cells.
N. Friedrich, M. Hagedorn, D. Soldati-Favre, and T. Soldati (2012)
Microbiol. Mol. Biol. Rev. 76, 707-720
   Abstract »    Full Text »    PDF »
Mycobacterial Shuttle Vectors Designed for High-Level Protein Expression in Infected Macrophages.
J. L. Eitson, J. J. Medeiros, A. R. Hoover, S. Srivastava, K. T. Roybal, J. A. Ainsa, E. J. Hansen, T. Gumbo, and N. S. C. van Oers (2012)
Appl. Envir. Microbiol. 78, 6829-6837
   Abstract »    Full Text »    PDF »
Dynamic Roles of Type I and Type II IFNs in Early Infection with Mycobacterium tuberculosis.
L. Desvignes, A. J. Wolf, and J. D. Ernst (2012)
J. Immunol. 188, 6205-6215
   Abstract »    Full Text »    PDF »
The Mycobacterium tuberculosis Stress Response Factor SigH Is Required for Bacterial Burden as Well as Immunopathology in Primate Lungs.
S. Mehra, N. A. Golden, K. Stuckey, P. J. Didier, L. A. Doyle, K. E. Russell-Lodrigue, C. Sugimoto, A. Hasegawa, S. K. Sivasubramani, C. J. Roy, et al. (2012)
The Journal of Infectious Disease 205, 1203-1213
   Abstract »    Full Text »    PDF »
A model 450 million years in the making: zebrafish and vertebrate immunity.
S. A. Renshaw and N. S. Trede (2012)
Dis. Model. Mech. 5, 38-47
   Abstract »    Full Text »    PDF »
LipC (Rv0220) Is an Immunogenic Cell Surface Esterase of Mycobacterium tuberculosis.
G. Shen, K. Singh, D. Chandra, C. Serveau-Avesque, D. Maurin, S. Canaan, R. Singla, D. Behera, and S. Laal (2012)
Infect. Immun. 80, 243-253
   Abstract »    Full Text »    PDF »
The role of matrix metalloproteinases in cystic fibrosis lung disease.
A. Gaggar, A. Hector, P. E. Bratcher, M. A. Mall, M. Griese, and D. Hartl (2011)
Eur. Respir. J. 38, 721-727
   Abstract »    Full Text »    PDF »
Mycobacterium tuberculosis Triggers Host Type I IFN Signaling To Regulate IL-1{beta} Production in Human Macrophages.
A. Novikov, M. Cardone, R. Thompson, K. Shenderov, K. D. Kirschman, K. D. Mayer-Barber, T. G. Myers, R. L. Rabin, G. Trinchieri, A. Sher, et al. (2011)
J. Immunol. 187, 2540-2547
   Abstract »    Full Text »    PDF »
Matrix metalloproteinases in tuberculosis.
P. T. Elkington, C. A. Ugarte-Gil, and J. S. Friedland (2011)
Eur. Respir. J. 38, 456-464
   Abstract »    Full Text »    PDF »
MMPs are regulatory enzymes in pathways of inflammatory disorders, tissue injury, malignancies and remodelling of the lung.
J. Muller-Quernheim (2011)
Eur. Respir. J. 38, 12-14
   Full Text »    PDF »
EsaD, a Secretion Factor for the Ess Pathway in Staphylococcus aureus.
M. Anderson, Y.-H. Chen, E. K. Butler, and D. M. Missiakas (2011)
J. Bacteriol. 193, 1583-1589
   Abstract »    Full Text »    PDF »
Tuberculosis Immunopathology: The Neglected Role of Extracellular Matrix Destruction.
P. T. Elkington, J. M. D'Armiento, and J. S. Friedland (2011)
Science Translational Medicine 3, 71ps6
   Full Text »    PDF »
Mycobacterium tuberculosis Directs Immunofocusing of CD8+ T Cell Responses Despite Vaccination.
J. S. Woodworth, D. Shin, M. Volman, C. Nunes-Alves, S. M. Fortune, and S. M. Behar (2011)
J. Immunol. 186, 1627-1637
   Abstract »    Full Text »    PDF »
mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish.
F. Ellett, L. Pase, J. W. Hayman, A. Andrianopoulos, and G. J. Lieschke (2011)
Blood 117, e49-e56
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882