Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 327 (5968): 1000-1004

Copyright © 2010 by the American Association for the Advancement of Science

Regulation of Cellular Metabolism by Protein Lysine Acetylation

Shimin Zhao,1,2 Wei Xu,1,2,* Wenqing Jiang,1,2,* Wei Yu,1,2 Yan Lin,2 Tengfei Zhang,1,2 Jun Yao,3 Li Zhou,4 Yaxue Zeng,4 Hong Li,5 Yixue Li,6 Jiong Shi,6 Wenlin An,7 Susan M. Hancock,7 Fuchu He,3 Lunxiu Qin,5 Jason Chin,7 Pengyuan Yang,3 Xian Chen,3,4 Qunying Lei,1,2,8 Yue Xiong,1,2,4,{dagger} Kun-Liang Guan1,2,8,9,{dagger}

Abstract: Protein lysine acetylation has emerged as a key posttranslational modification in cellular regulation, in particular through the modification of histones and nuclear transcription regulators. We show that lysine acetylation is a prevalent modification in enzymes that catalyze intermediate metabolism. Virtually every enzyme in glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, the urea cycle, fatty acid metabolism, and glycogen metabolism was found to be acetylated in human liver tissue. The concentration of metabolic fuels, such as glucose, amino acids, and fatty acids, influenced the acetylation status of metabolic enzymes. Acetylation activated enoyl–coenzyme A hydratase/3-hydroxyacyl–coenzyme A dehydrogenase in fatty acid oxidation and malate dehydrogenase in the TCA cycle, inhibited argininosuccinate lyase in the urea cycle, and destabilized phosphoenolpyruvate carboxykinase in gluconeogenesis. Our study reveals that acetylation plays a major role in metabolic regulation.

1 School of Life Sciences, Fudan University, Shanghai 20032, China.
2 Molecular and Cell Biology Lab, Fudan University, Shanghai 20032, China.
3 Center of Proteomics, Institute of Biomedical Sciences, Fudan University, Shanghai 20032, China.
4 Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
5 Affiliated Zhongshan Hospital, Fudan University, Shanghai 20032, China.
6 Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
7 Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 OQH, UK.
8 Department of Biological Chemistry, Fudan University, Shanghai 20032, China.
9 Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: yxiong{at}email.unc.edu (Y.X.); kuguan{at}ucsd.edu (K.L.G.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Toward an understanding of the protein interaction network of the human liver.
J. Wang, K. Huo, L. Ma, L. Tang, D. Li, X. Huang, Y. Yuan, C. Li, W. Wang, W. Guan, et al. (2014)
Mol Syst Biol 7, 536
   Abstract »    Full Text »    PDF »
Signaling for death: tyrosine phosphorylation in the response to glucose deprivation.
B. D. Bryson and F. M. White (2014)
Mol Syst Biol 8, 591
   Full Text »    PDF »
Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium.
V. van Noort, J. Seebacher, S. Bader, S. Mohammed, I. Vonkova, M. J. Betts, S. Kuhner, R. Kumar, T. Maier, M. O'Flaherty, et al. (2014)
Mol Syst Biol 8, 571
   Abstract »    Full Text »    PDF »
Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.
B. T. Weinert, V. Iesmantavicius, T. Moustafa, C. Scholz, S. A. Wagner, C. Magnes, R. Zechner, and C. Choudhary (2014)
Mol Syst Biol 10, 716
   Abstract »    Full Text »    PDF »
Acetylation control of metabolic enzymes in cancer: an updated version.
W. Huang, Z. Wang, and Q.-Y. Lei (2014)
Acta Biochim Biophys Sin 46, 204-213
   Abstract »    Full Text »    PDF »
Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation.
O. Pougovkina, H. te Brinke, R. Ofman, A. G. van Cruchten, W. Kulik, R. J. A. Wanders, S. M. Houten, and V. C. J. de Boer (2014)
Hum. Mol. Genet.
   Abstract »    Full Text »    PDF »
Glyceraldehyde-3-phosphate Dehydrogenase Is Activated by Lysine 254 Acetylation in Response to Glucose Signal.
T. Li, M. Liu, X. Feng, Z. Wang, I. Das, Y. Xu, X. Zhou, Y. Sun, K.-L. Guan, Y. Xiong, et al. (2014)
J. Biol. Chem. 289, 3775-3785
   Abstract »    Full Text »    PDF »
A new link between diabetes and cancer: enhanced WNT/{beta}-catenin signaling by high glucose.
C. Garcia-Jimenez, J. M. Garcia-Martinez, A. Chocarro-Calvo, and A. De la Vieja (2014)
J. Mol. Endocrinol. 52, R51-R66
   Abstract »    Full Text »    PDF »
Aldose Reductase Drives Hyperacetylation of Egr-1 in Hyperglycemia and Consequent Upregulation of Proinflammatory and Prothrombotic Signals.
S. Vedantham, D. Thiagarajan, R. Ananthakrishnan, L. Wang, R. Rosario, Y. S. Zou, I. Goldberg, S. F. Yan, A. M. Schmidt, and R. Ramasamy (2014)
Diabetes 63, 761-774
   Abstract »    Full Text »    PDF »
Prenatal Hypoxia Reduces Mitochondrial Protein Levels and Cytochrome c Oxidase Activity in Offspring Guinea Pig Hearts.
Y. M. Al-Hasan, G. A. Pinkas, and L. P. Thompson (2014)
Reproductive Sciences
   Abstract »    Full Text »    PDF »
Extensive Post-translational Modification of Active and Inactivated Forms of Endogenous p53.
C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman (2014)
Mol. Cell. Proteomics 13, 1-17
   Abstract »    Full Text »    PDF »
CPLM: a database of protein lysine modifications.
Z. Liu, Y. Wang, T. Gao, Z. Pan, H. Cheng, Q. Yang, Z. Cheng, A. Guo, J. Ren, and Y. Xue (2014)
Nucleic Acids Res. 42, D531-D536
   Abstract »    Full Text »    PDF »
Cyclophilin D Modulates Mitochondrial Acetylome.
T. T. M. Nguyen, R. Wong, S. Menazza, J. Sun, Y. Chen, G. Wang, M. Gucek, C. Steenbergen, M. N. Sack, and E. Murphy (2013)
Circ. Res. 113, 1308-1319
   Abstract »    Full Text »    PDF »
Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective.
W. C. van Heeswijk, H. V. Westerhoff, and F. C. Boogerd (2013)
Microbiol. Mol. Biol. Rev. 77, 628-695
   Abstract »    Full Text »    PDF »
Identification of Lysine Succinylation Substrates and the Succinylation Regulatory Enzyme CobB in Escherichia coli.
G. Colak, Z. Xie, A. Y. Zhu, L. Dai, Z. Lu, Y. Zhang, X. Wan, Y. Chen, Y. H. Cha, H. Lin, et al. (2013)
Mol. Cell. Proteomics 12, 3509-3520
   Abstract »    Full Text »    PDF »
Regulation of Acetylation Restores Proteolytic Function of Diseased Myocardium in Mouse and Human.
D. Wang, C. Fang, N. C. Zong, D. A. Liem, M. Cadeiras, S. B. Scruggs, H. Yu, A. K. Kim, P. Yang, M. Deng, et al. (2013)
Mol. Cell. Proteomics 12, 3793-3802
   Abstract »    Full Text »    PDF »
Glucose-6-Phosphate-Mediated Activation of Liver Glycogen Synthase Plays a Key Role in Hepatic Glycogen Synthesis.
A. von Wilamowitz-Moellendorff, R. W. Hunter, M. Garcia-Rocha, L. Kang, I. Lopez-Soldado, L. Lantier, K. Patel, M. W. Peggie, C. Martinez-Pons, M. Voss, et al. (2013)
Diabetes 62, 4070-4082
   Abstract »    Full Text »    PDF »
Advances in Understanding the Expression and Function of Dipeptidyl Peptidase 8 and 9.
H. Zhang, Y. Chen, F. M. Keane, and M. D. Gorrell (2013)
Mol. Cancer Res. 11, 1487-1496
   Abstract »    Full Text »    PDF »
Sirtuin 3 (SIRT3) Protein Regulates Long-chain Acyl-CoA Dehydrogenase by Deacetylating Conserved Lysines Near the Active Site.
S. S. Bharathi, Y. Zhang, A.-W. Mohsen, R. Uppala, M. Balasubramani, E. Schreiber, G. Uechi, M. E. Beck, M. J. Rardin, J. Vockley, et al. (2013)
J. Biol. Chem. 288, 33837-33847
   Abstract »    Full Text »    PDF »
Mechanism and Physiological Significance of Growth Factor-Related Autophagy.
T. Y. Li, S.-Y. Lin, and S.-C. Lin (2013)
Physiology 28, 423-431
   Abstract »    Full Text »    PDF »
Fueling Immunity: Insights into Metabolism and Lymphocyte Function.
E. L. Pearce, M. C. Poffenberger, C.-H. Chang, and R. G. Jones (2013)
Science 342, 1242454
   Abstract »    Full Text »    PDF »
DNMT1 Is Regulated by ATP-Citrate Lyase and Maintains Methylation Patterns during Adipocyte Differentiation.
T. Londono Gentile, C. Lu, P. M. Lodato, S. Tse, S. H. Olejniczak, E. S. Witze, C. B. Thompson, and K. E. Wellen (2013)
Mol. Cell. Biol. 33, 3864-3878
   Abstract »    Full Text »    PDF »
Sirt3 Regulates Metabolic Flexibility of Skeletal Muscle Through Reversible Enzymatic Deacetylation.
E. Jing, B. T. O'Neill, M. J. Rardin, A. Kleinridders, O. R. Ilkeyeva, S. Ussar, J. R. Bain, K. Y. Lee, E. M. Verdin, C. B. Newgard, et al. (2013)
Diabetes 62, 3404-3417
   Abstract »    Full Text »    PDF »
Acetylation of the Response Regulator RcsB Controls Transcription from a Small RNA Promoter.
L. I. Hu, B. K. Chi, M. L. Kuhn, E. V. Filippova, A. J. Walker-Peddakotla, K. Basell, D. Becher, W. F. Anderson, H. Antelmann, and A. J. Wolfe (2013)
J. Bacteriol. 195, 4174-4186
   Abstract »    Full Text »    PDF »
Quantification of Mitochondrial Acetylation Dynamics Highlights Prominent Sites of Metabolic Regulation.
A. J. Still, B. J. Floyd, A. S. Hebert, C. A. Bingman, J. J. Carson, D. R. Gunderson, B. K. Dolan, P. A. Grimsrud, K. E. Dittenhafer-Reed, D. S. Stapleton, et al. (2013)
J. Biol. Chem. 288, 26209-26219
   Abstract »    Full Text »    PDF »
Metabolic energy sensors (AMPK and SIRT1), protein carbonylation and cardiac failure as biomarkers of thermal stress in an intertidal limpet: linking energetic allocation with environmental temperature during aerial emersion.
G.-d. Han, S. Zhang, D. J. Marshall, C.-h. Ke, and Y.-w. Dong (2013)
J. Exp. Biol. 216, 3273-3282
   Abstract »    Full Text »    PDF »
Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis.
K. L. Schauer, D. M. Freund, J. E. Prenni, and N. P. Curthoys (2013)
Am J Physiol Renal Physiol 305, F628-F640
   Abstract »    Full Text »    PDF »
Cardiac Metabolism and its Interactions With Contraction, Growth, and Survival of Cardiomyocytes.
S. C. Kolwicz Jr, S. Purohit, and R. Tian (2013)
Circ. Res. 113, 603-616
   Abstract »    Full Text »    PDF »
Aryl Hydrocarbon Receptor Activation by Dioxin Targets Phosphoenolpyruvate Carboxykinase (PEPCK) for ADP-ribosylation via 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-inducible Poly(ADP-ribose) Polymerase (TiPARP).
S. Diani-Moore, S. Zhang, P. Ram, and A. B. Rifkind (2013)
J. Biol. Chem. 288, 21514-21525
   Abstract »    Full Text »    PDF »
Mitochondrial Sirtuins as Therapeutic Targets for Age-Related Disorders.
J. Shih and G. Donmez (2013)
Genes & Cancer
   Abstract »    Full Text »    PDF »
Mice Lacking {alpha}-Tubulin Acetyltransferase 1 Are Viable but Display {alpha}-Tubulin Acetylation Deficiency and Dentate Gyrus Distortion.
G.-W. Kim, L. Li, M. Gorbani, L. You, and X.-J. Yang (2013)
J. Biol. Chem. 288, 20334-20350
   Abstract »    Full Text »    PDF »
Site-specific Acetylation of the Proteasome Activator REG{gamma} Directs Its Heptameric Structure and Functions.
J. Liu, Y. Wang, L. Li, L. Zhou, H. Wei, Q. Zhou, J. Liu, W. Wang, L. Ji, P. Shan, et al. (2013)
J. Biol. Chem. 288, 16567-16578
   Abstract »    Full Text »    PDF »
mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases.
L. Mitchell, S. Huard, M. Cotrut, R. Pourhanifeh-Lemeri, A.-L. Steunou, A. Hamza, J.-P. Lambert, H. Zhou, Z. Ning, A. Basu, et al. (2013)
PNAS 110, E1641-E1650
   Abstract »    Full Text »    PDF »
Neuronal Sirt1 Deficiency Increases Insulin Sensitivity in Both Brain and Peripheral Tissues.
M. Lu, D. A. Sarruf, P. Li, O. Osborn, M. Sanchez-Alavez, S. Talukdar, A. Chen, G. Bandyopadhyay, J. Xu, H. Morinaga, et al. (2013)
J. Biol. Chem. 288, 10722-10735
   Abstract »    Full Text »    PDF »
Carnitine-Acyltransferase System Inhibition, Cancer Cell Death, and Prevention of Myc-Induced Lymphomagenesis.
A. Pacilli, M. Calienni, S. Margarucci, M. D'Apolito, O. Petillo, L. Rocchi, G. Pasquinelli, R. Nicolai, A. Koverech, M. Calvani, et al. (2013)
J Natl Cancer Inst 105, 489-498
   Abstract »    Full Text »    PDF »
Disruption of uridine homeostasis links liver pyrimidine metabolism to lipid accumulation.
T. T. Le, A. Ziemba, Y. Urasaki, E. Hayes, S. Brotman, and G. Pizzorno (2013)
J. Lipid Res. 54, 1044-1057
   Abstract »    Full Text »    PDF »
Improving Insulin Sensitivity With HDAC Inhibitor.
J. Ye (2013)
Diabetes 62, 685-687
   Full Text »    PDF »
Linking Post-Translational Modifications and Variation of Phenotypic Traits.
W. Albertin, P. Marullo, M. Bely, M. Aigle, A. Bourgais, O. Langella, T. Balliau, D. Chevret, B. Valot, T. da Silva, et al. (2013)
Mol. Cell. Proteomics 12, 720-735
   Abstract »    Full Text »    PDF »
Circadian acetylome reveals regulation of mitochondrial metabolic pathways.
S. Masri, V. R. Patel, K. L. Eckel-Mahan, S. Peleg, I. Forne, A. G. Ladurner, P. Baldi, A. Imhof, and P. Sassone-Corsi (2013)
PNAS 110, 3339-3344
   Abstract »    Full Text »    PDF »
Protein acetylation links the circadian clock to mitochondrial function.
G. Rey and A. B. Reddy (2013)
PNAS 110, 3210-3211
   Full Text »    PDF »
Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation.
N. T. Snider, J. M. Leonard, R. Kwan, N. W. Griggs, L. Rui, and M. B. Omary (2013)
J. Cell Biol. 200, 241-247
   Abstract »    Full Text »    PDF »
SIRT3 Weighs Heavily in the Metabolic Balance: A New Role for SIRT3 in Metabolic Syndrome.
M. F. Green and M. D. Hirschey (2013)
J Gerontol A Biol Sci Med Sci 68, 105-107
   Abstract »    Full Text »    PDF »
Response of the mitochondrial proteome of rat renal proximal convoluted tubules to chronic metabolic acidosis.
D. M. Freund, J. E. Prenni, and N. P. Curthoys (2013)
Am J Physiol Renal Physiol 304, F145-F155
   Abstract »    Full Text »    PDF »
Mitochondrial Protein Acylation and Intermediary Metabolism: Regulation by Sirtuins and Implications for Metabolic Disease.
J. C. Newman, W. He, and E. Verdin (2012)
J. Biol. Chem. 287, 42436-42443
   Abstract »    Full Text »    PDF »
Sirtuin Catalysis and Regulation.
J. L. Feldman, K. E. Dittenhafer-Reed, and J. M. Denu (2012)
J. Biol. Chem. 287, 42419-42427
   Abstract »    Full Text »    PDF »
Post-translational Modification of Serine/Threonine Kinase LKB1 via Adduction of the Reactive Lipid Species 4-Hydroxy-trans-2-nonenal (HNE) at Lysine Residue 97 Directly Inhibits Kinase Activity.
T. D. Calamaras, C. Lee, F. Lan, Y. Ido, D. A. Siwik, and W. S. Colucci (2012)
J. Biol. Chem. 287, 42400-42406
   Abstract »    Full Text »    PDF »
Proteomics of hyposaline stress in blue mussel congeners (genus Mytilus): implications for biogeographic range limits in response to climate change.
L. Tomanek, M. J. Zuzow, L. Hitt, L. Serafini, and J. J. Valenzuela (2012)
J. Exp. Biol. 215, 3905-3916
   Abstract »    Full Text »    PDF »
Cancer Metabolism: What we Can Learn from Proteomic Analysis by Mass Spectrometry.
W. Zhou, L. A. Liotta, and E. F. Petricoin (2012)
Cancer Genomics Proteomics 9, 373-381
   Abstract »    Full Text »    PDF »
Environmental Proteomics of the Mussel Mytilus: Implications for Tolerance to Stress and Change in Limits of Biogeographic Ranges in Response to Climate Change.
L. Tomanek (2012)
Integr. Comp. Biol. 52, 648-664
   Abstract »    Full Text »    PDF »
Proteome-wide Analysis of Lysine Acetylation Suggests its Broad Regulatory Scope in Saccharomyces cerevisiae.
P. Henriksen, S. A. Wagner, B. T. Weinert, S. Sharma, G. Bacinskaja, M. Rehman, A. H. Juffer, T. C. Walther, M. Lisby, and C. Choudhary (2012)
Mol. Cell. Proteomics 11, 1510-1522
   Abstract »    Full Text »    PDF »
Autoacetylation of the MYST Lysine Acetyltransferase MOF Protein.
C. Yang, J. Wu, S. H. Sinha, J. M. Neveu, and Y. G. Zheng (2012)
J. Biol. Chem. 287, 34917-34926
   Abstract »    Full Text »    PDF »
Suppression Analysis of esa1 Mutants in Saccharomyces cerevisiae Links NAB3 to Transcriptional Silencing and Nucleolar Functions.
C. S. Chang, A. Clarke, and L. Pillus (2012)
g3 2, 1223-1232
   Abstract »    Full Text »    PDF »
Quantitative Acetylome Analysis Reveals the Roles of SIRT1 in Regulating Diverse Substrates and Cellular Pathways.
Y. Chen, W. Zhao, J. S. Yang, Z. Cheng, H. Luo, Z. Lu, M. Tan, W. Gu, and Y. Zhao (2012)
Mol. Cell. Proteomics 11, 1048-1062
   Abstract »    Full Text »    PDF »
Acetylation of malate dehydrogenase 1 promotes adipogenic differentiation via activating its enzymatic activity.
E. Y. Kim, W. K. Kim, H. J. Kang, J.-H. Kim, S. J. Chung, Y. S. Seo, S. G. Park, S. C. Lee, and K.-H. Bae (2012)
J. Lipid Res. 53, 1864-1876
   Abstract »    Full Text »    PDF »
Direct and Indirect Involvement of MicroRNA-499 in Clinical and Experimental Cardiomyopathy.
S. J. Matkovich, Y. Hu, W. H. Eschenbacher, L. E. Dorn, and G. W. Dorn II (2012)
Circ. Res. 111, 521-531
   Abstract »    Full Text »    PDF »
NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise.
A. T. White and S. Schenk (2012)
Am J Physiol Endocrinol Metab 303, E308-E321
   Abstract »    Full Text »    PDF »
An anticancer agent, pyrvinium pamoate inhibits the NADH-fumarate reductase system--a unique mitochondrial energy metabolism in tumour microenvironments.
E. Tomitsuka, K. Kita, and H. Esumi (2012)
J. Biochem. 152, 171-183
   Abstract »    Full Text »    PDF »
Mechanistic insights into the regulation of metabolic enzymes by acetylation.
Y. Xiong and K.-L. Guan (2012)
J. Cell Biol. 198, 155-164
   Abstract »    Full Text »    PDF »
Quantitative assessment of the impact of the gut microbiota on lysine {varepsilon}-acetylation of host proteins using gnotobiotic mice.
G. M. Simon, J. Cheng, and J. I. Gordon (2012)
PNAS 109, 11133-11138
   Abstract »    Full Text »    PDF »
Acetyl-CoA Carboxylase Regulates Global Histone Acetylation.
L. Galdieri and A. Vancura (2012)
J. Biol. Chem. 287, 23865-23876
   Abstract »    Full Text »    PDF »
New Targets for Acetylation in Autophagy.
A. Hamai and P. Codogno (2012)
Science Signaling 5, pe29
   Abstract »    Full Text »    PDF »
ASEB: a web server for KAT-specific acetylation site prediction.
L. Wang, Y. Du, M. Lu, and T. Li (2012)
Nucleic Acids Res. 40, W376-W379
   Abstract »    Full Text »    PDF »
Identification of a binding motif specific to HNF4 by comparative analysis of multiple nuclear receptors.
B. Fang, D. Mane-Padros, E. Bolotin, T. Jiang, and F. M. Sladek (2012)
Nucleic Acids Res. 40, 5343-5356
   Abstract »    Full Text »    PDF »
Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover.
S. Lange, S. Perera, P. Teh, and J. Chen (2012)
Mol. Biol. Cell 23, 2490-2504
   Abstract »    Full Text »    PDF »
Friedreich's ataxia reveals a mechanism for coordinate regulation of oxidative metabolism via feedback inhibition of the SIRT3 deacetylase.
G. R. Wagner, P. M. Pride, C. M. Babbey, and R. M. Payne (2012)
Hum. Mol. Genet. 21, 2688-2697
   Abstract »    Full Text »    PDF »
Lysine Acetylation Is Widespread on Proteins of Diverse Function and Localization in the Protozoan Parasite Toxoplasma gondii.
V. Jeffers and W. J. Sullivan Jr. (2012)
Eukaryot. Cell 11, 735-742
   Abstract »    Full Text »    PDF »
More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise.
A. Philp, M. Hargreaves, and K. Baar (2012)
Am J Physiol Endocrinol Metab 302, E1343-E1351
   Abstract »    Full Text »    PDF »
Reversible Lysine Acetylation Regulates Activity of Human Glycine N-Acyltransferase-like 2 (hGLYATL2): IMPLICATIONS FOR PRODUCTION OF GLYCINE-CONJUGATED SIGNALING MOLECULES.
D. P. Waluk, F. Sucharski, L. Sipos, J. Silberring, and M. C. Hunt (2012)
J. Biol. Chem. 287, 16158-16167
   Abstract »    Full Text »    PDF »
Modification Site Localization Scoring: Strategies and Performance.
R. J. Chalkley and K. R. Clauser (2012)
Mol. Cell. Proteomics 11, 3-14
   Abstract »    Full Text »    PDF »
Links between metabolism and cancer.
C. V. Dang (2012)
Genes & Dev. 26, 877-890
   Abstract »    Full Text »    PDF »
The Induction of Serine/Threonine Protein Phosphorylations by a PDGFR/TrkA Chimera in Stably Transfected PC12 Cells.
J. Biarc, R. J. Chalkley, A. L. Burlingame, and R. A. Bradshaw (2012)
Mol. Cell. Proteomics 11, 15-30
   Abstract »    Full Text »    PDF »
Histone Deacetylase 6 Associates With Ribosomes and Regulates De Novo Protein Translation During Arsenite Stress.
K. V. Kappeler, J. Zhang, T. N. Dinh, J. G. Strom, and Q. M. Chen (2012)
Toxicol. Sci. 127, 246-255
   Abstract »    Full Text »    PDF »
The protein expression landscape of the Arabidopsis root.
J. J. Petricka, M. A. Schauer, M. Megraw, N. W. Breakfield, J. W. Thompson, S. Georgiev, E. J. Soderblom, U. Ohler, M. A. Moseley, U. Grossniklaus, et al. (2012)
PNAS 109, 6811-6818
   Abstract »    Full Text »    PDF »
Function and Molecular Mechanism of Acetylation in Autophagy Regulation.
C. Yi, M. Ma, L. Ran, J. Zheng, J. Tong, J. Zhu, C. Ma, Y. Sun, S. Zhang, W. Feng, et al. (2012)
Science 336, 474-477
   Abstract »    Full Text »    PDF »
SIRT3 Protein Deacetylates Isocitrate Dehydrogenase 2 (IDH2) and Regulates Mitochondrial Redox Status.
W. Yu, K. E. Dittenhafer-Reed, and J. M. Denu (2012)
J. Biol. Chem. 287, 14078-14086
   Abstract »    Full Text »    PDF »
Interferon Regulatory Factor 1 Transactivates Expression of Human DNA Polymerase {eta} in Response to Carcinogen N-Methyl-N'-nitro-N-nitrosoguanidine.
H. Qi, H. Zhu, M. Lou, Y. Fan, H. Liu, J. Shen, Z. Li, X. Lv, J. Shan, L. Zhu, et al. (2012)
J. Biol. Chem. 287, 12622-12633
   Abstract »    Full Text »    PDF »
HDAC6 Regulates Glucocorticoid Receptor Signaling in Serotonin Pathways with Critical Impact on Stress Resilience.
J. Espallergues, S. L. Teegarden, A. Veerakumar, J. Boulden, C. Challis, J. Jochems, M. Chan, T. Petersen, E. Deneris, P. Matthias, et al. (2012)
J. Neurosci. 32, 4400-4416
   Abstract »    Full Text »    PDF »
Liver Patt1 deficiency protects male mice from age-associated but not high-fat diet-induced hepatic steatosis.
Y. Liu, D. Zhou, F. Zhang, Y. Tu, Y. Xia, H. Wang, B. Zhou, Y. Zhang, J. Wu, X. Gao, et al. (2012)
J. Lipid Res. 53, 358-367
   Abstract »    Full Text »    PDF »
Proteomic Analysis of Stem Cell Differentiation and Early Development.
D. van Hoof, J. Krijgsveld, and C. Mummery (2012)
Cold Spring Harb Perspect Biol 4, a008177
   Abstract »    Full Text »    PDF »
Regulation of Glycolytic Enzyme Phosphoglycerate Mutase-1 by Sirt1 Protein-mediated Deacetylation.
W. C. Hallows, W. Yu, and J. M. Denu (2012)
J. Biol. Chem. 287, 3850-3858
   Abstract »    Full Text »    PDF »
MYST protein acetyltransferase activity requires active site lysine autoacetylation.
H. Yuan, D. Rossetto, H. Mellert, W. Dang, M. Srinivasan, J. Johnson, S. Hodawadekar, E. C. Ding, K. Speicher, N. Abshiru, et al. (2012)
EMBO J. 31, 58-70
   Abstract »    Full Text »    PDF »
Lysine methylation: beyond histones.
X. Zhang, H. Wen, and X. Shi (2012)
Acta Biochim Biophys Sin 44, 14-27
   Abstract »    Full Text »    PDF »
PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse.
P. V. Hornbeck, J. M. Kornhauser, S. Tkachev, B. Zhang, E. Skrzypek, B. Murray, V. Latham, and M. Sullivan (2012)
Nucleic Acids Res. 40, D261-D270
   Abstract »    Full Text »    PDF »
Characterization and Prediction of Lysine (K)-Acetyl-Transferase Specific Acetylation Sites.
T. Li, Y. Du, L. Wang, L. Huang, W. Li, M. Lu, X. Zhang, and W.-G. Zhu (2012)
Mol. Cell. Proteomics 11, M111.011080
   Abstract »    Full Text »    PDF »
Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the heart.
M. N. Sack (2011)
Am J Physiol Heart Circ Physiol 301, H2191-H2197
   Abstract »    Full Text »    PDF »
Sirt5 Is a NAD-Dependent Protein Lysine Demalonylase and Desuccinylase.
J. Du, Y. Zhou, X. Su, J. J. Yu, S. Khan, H. Jiang, J. Kim, J. Woo, J. H. Kim, B. H. Choi, et al. (2011)
Science 334, 806-809
   Abstract »    Full Text »    PDF »
HDAC inhibitor SAHA normalizes the levels of VLCFAs in human skin fibroblasts from X-ALD patients and downregulates the expression of proinflammatory cytokines in Abcd1/2-silenced mouse astrocytes.
J. Singh, M. Khan, and I. Singh (2011)
J. Lipid Res. 52, 2056-2069
   Abstract »    Full Text »    PDF »
Skeletal muscle proteomics: carbohydrate metabolism oscillates with seasonal and torpor-arousal physiology of hibernation.
A. G. Hindle, A. Karimpour-Fard, L. E. Epperson, L. E. Hunter, and S. L. Martin (2011)
Am J Physiol Regulatory Integrative Comp Physiol 301, R1440-R1452
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882