Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 327 (5972): 1518-1522

Copyright © 2010 by the American Association for the Advancement of Science

CKAMP44: A Brain-Specific Protein Attenuating Short-Term Synaptic Plasticity in the Dentate Gyrus

Jakob von Engelhardt,1,* Volker Mack,1,2,* Rolf Sprengel,3 Netta Kavenstock,4 Ka Wan Li,2 Yael Stern-Bach,4 August B. Smit,2 Peter H. Seeburg,3 Hannah Monyer1,{dagger}

Abstract: CKAMP44, identified here by a proteomic approach, is a brain-specific type I transmembrane protein that associates with AMPA receptors in synaptic spines. CKAMP44 expressed in Xenopus oocytes reduced GluA1- and A2-mediated steady-state currents, but did not affect kainate- or N-methyl- D-aspartate (NMDA) receptor–mediated currents. Mouse hippocampal CA1 pyramidal neurons expressed CKAMP44 at low abundance, and overexpression of CKAMP44 led to stronger and faster AMPA receptor desensitization, slower recovery from desensitization, and a reduction in the paired-pulse ratio of AMPA currents. By contrast, dentate gyrus granule cells exhibited strong CKAMP44 expression, and CKAMP44 knockout increased the paired-pulse ratio of AMPA currents in lateral and medial perforant path–granule cell synapses. CKAMP44 thus modulates short-term plasticity at specific excitatory synapses.

1 Department of Clinical Neurobiology, University of Heidelberg, 6910 Heidelberg, Germany.
2 Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands.
3 Department of Molecular Neurobiology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany.
4 Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), the Hebrew University–Hadassah Medical School, Jerusalem 91120, Israel.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: monyer{at}urz.uni-hd.de


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Differential requirement for NMDAR activity in SAP97{beta}-mediated regulation of the number and strength of glutamatergic AMPAR-containing synapses.
M. Liu, L. D. Lewis, R. Shi, E. N. Brown, and W. Xu (2014)
J Neurophysiol 111, 648-658
   Abstract »    Full Text »    PDF »
Functional properties of extrasynaptic AMPA and NMDA receptors during postnatal hippocampal neurogenesis.
C. Schmidt-Salzmann, L. Li, and J. Bischofberger (2014)
J. Physiol. 592, 125-140
   Abstract »    Full Text »    PDF »
Auxiliary subunits provide new insights into regulation of AMPA receptor trafficking.
A. Sumioka (2013)
J. Biochem. 153, 331-337
   Abstract »    Full Text »    PDF »
AMPA receptor/TARP stoichiometry visualized by single-molecule subunit counting.
P. Hastie, M. H. Ulbrich, H.-L. Wang, R. J. Arant, A. G. Lau, Z. Zhang, E. Y. Isacoff, and L. Chen (2013)
PNAS 110, 5163-5168
   Abstract »    Full Text »    PDF »
Neurobeachin regulates neurotransmitter receptor trafficking to synapses.
R. Nair, J. Lauks, S. Jung, N. E. Cooke, H. de Wit, N. Brose, M. W. Kilimann, M. Verhage, and J. Rhee (2013)
J. Cell Biol. 200, 61-80
   Abstract »    Full Text »    PDF »
TARP-associated AMPA receptors display an increased maximum channel conductance and multiple kinetically distinct open states.
C. Shelley, M. Farrant, and S. G. Cull-Candy (2012)
J. Physiol. 590, 5723-5738
   Abstract »    Full Text »    PDF »
Cyclothiazide-induced persistent increase in respiratory-related activity in vitro.
W. E. Babiec, K. F. Faull, and J. L. Feldman (2012)
J. Physiol. 590, 4897-4915
   Abstract »    Full Text »    PDF »
Drosophila Neto is essential for clustering glutamate receptors at the neuromuscular junction.
Y.-J. Kim, H. Bao, L. Bonanno, B. Zhang, and M. Serpe (2012)
Genes & Dev. 26, 974-987
   Abstract »    Full Text »    PDF »
Synaptic Neurotransmitter-Gated Receptors.
T. G. Smart and P. Paoletti (2012)
Cold Spring Harb Perspect Biol 4, a009662
   Abstract »    Full Text »    PDF »
Contactin-associated Protein 1 (Caspr1) Regulates the Traffic and Synaptic Content of {alpha}-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA)-type Glutamate Receptors.
S. D. Santos, O. Iuliano, L. Ribeiro, J. Veran, J. S. Ferreira, P. Rio, C. Mulle, C. B. Duarte, and A. L. Carvalho (2012)
J. Biol. Chem. 287, 6868-6877
   Abstract »    Full Text »    PDF »
Defined criteria for auxiliary subunits of glutamate receptors.
D. Yan and S. Tomita (2012)
J. Physiol. 590, 21-31
   Abstract »    Full Text »    PDF »
Redefining the classification of AMPA-selective ionotropic glutamate receptors.
D. Bowie (2012)
J. Physiol. 590, 49-61
   Abstract »    Full Text »    PDF »
GluA4 is indispensable for driving fast neurotransmission across a high-fidelity central synapse.
Y.-M. Yang, J. Aitoubah, A. M. Lauer, M. Nuriya, K. Takamiya, Z. Jia, B. J. May, R. L. Huganir, and L.-Y. Wang (2011)
J. Physiol. 589, 4209-4227
   Abstract »    Full Text »    PDF »
Transmembrane AMPA Receptor Regulatory Proteins and Cornichon-2 Allosterically Regulate AMPA Receptor Antagonists and Potentiators.
D. A. Schober, M. B. Gill, H. Yu, D. L. Gernert, M. W. Jeffries, P. L. Ornstein, A. S. Kato, C. C. Felder, and D. S. Bredt (2011)
J. Biol. Chem. 286, 13134-13142
   Abstract »    Full Text »    PDF »
Remodeling of Synaptic AMPA Receptor Subtype Alters the Probability and Pattern of Action Potential Firing.
I. Savtchouk and S. J. Liu (2011)
J. Neurosci. 31, 501-511
   Abstract »    Full Text »    PDF »
AMPA Receptors--Another Twist?.
M. Farrant and S. G. Cull-Candy (2010)
Science 327, 1463-1465
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882