Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 327 (5973): 1650-1653

Copyright © 2010 by the American Association for the Advancement of Science

The Wnt/β-Catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML

Yingzi Wang,1 Andrei V. Krivtsov,1 Amit U. Sinha,1,2 Trista E. North,3,4 Wolfram Goessling,4,5,6 Zhaohui Feng,1,2 Leonard I. Zon,1,4,7 Scott A. Armstrong1,2,4,*

Abstract: Leukemia stem cells (LSCs) are capable of limitless self-renewal and are responsible for the maintenance of leukemia. Because selective eradication of LSCs could offer substantial therapeutic benefit, there is interest in identifying the signaling pathways that control their development. We studied LSCs in mouse models of acute myelogenous leukemia (AML) induced either by coexpression of the Hoxa9 and Meis1a oncogenes or by the fusion oncoprotein MLL-AF9. We show that the Wnt/β-catenin signaling pathway is required for self-renewal of LSCs that are derived from either hematopoietic stem cells (HSC) or more differentiated granulocyte-macrophage progenitors (GMP). Because the Wnt/β-catenin pathway is normally active in HSCs but not in GMP, these results suggest that reactivation of β-catenin signaling is required for the transformation of progenitor cells by certain oncogenes. β-catenin is not absolutely required for self-renewal of adult HSCs; thus, targeting the Wnt/β-catenin pathway may represent a new therapeutic opportunity in AML.

1 Division of Hematology/Oncology, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
2 Department of Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA.
3 Department of Pathology, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA 02115, USA.
4 Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.
5 Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
6 Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
7 Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.

* To whom correspondence should be addressed. E-mail: scott.armstrong{at}childrens.harvard.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
miR-99a/100~125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGF{beta} and Wnt signaling.
S. Emmrich, M. Rasche, J. Schoning, C. Reimer, S. Keihani, A. Maroz, Y. Xie, Z. Li, A. Schambach, D. Reinhardt, et al. (2014)
Genes & Dev. 28, 858-874
   Abstract »    Full Text »    PDF »
Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia.
M. Jaras, P. G. Miller, L. P. Chu, R. V. Puram, E. C. Fink, R. K. Schneider, F. Al-Shahrour, P. Pena, L. J. Breyfogle, K. A. Hartwell, et al. (2014)
J. Exp. Med. 211, 605-612
   Abstract »    Full Text »    PDF »
Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance.
M. Buscarlet, V. Krasteva, L. Ho, C. Simon, J. Hebert, B. Wilhelm, G. R. Crabtree, G. Sauvageau, P. Thibault, and J. A. Lessard (2014)
Blood 123, 1720-1728
   Abstract »    Full Text »    PDF »
Cell intrinsic and extrinsic factors synergize in mice with haploinsufficiency for Tp53, and two human del(5q) genes, Egr1 and Apc.
A. Stoddart, J. Wang, A. A. Fernald, T. Karrison, J. Anastasi, and M. M. Le Beau (2014)
Blood 123, 228-238
   Abstract »    Full Text »    PDF »
Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia.
G. A. dos Santos, L. Kats, and P. P. Pandolfi (2013)
J. Exp. Med. 210, 2793-2802
   Abstract »    Full Text »    PDF »
Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974.
J. Liu, S. Pan, M. H. Hsieh, N. Ng, F. Sun, T. Wang, S. Kasibhatla, A. G. Schuller, A. G. Li, D. Cheng, et al. (2013)
PNAS 110, 20224-20229
   Abstract »    Full Text »    PDF »
Prostaglandin E2 enhances long-term repopulation but does not permanently alter inherent stem cell competitiveness.
J. Hoggatt, K. S. Mohammad, P. Singh, and L. M. Pelus (2013)
Blood 122, 2997-3000
   Abstract »    Full Text »    PDF »
Cross talk between Wnt/{beta}-catenin and Irf8 in leukemia progression and drug resistance.
M. Scheller, J. Schonheit, K. Zimmermann, U. Leser, F. Rosenbauer, and A. Leutz (2013)
J. Exp. Med. 210, 2239-2256
   Abstract »    Full Text »    PDF »
Inhibition of androgen receptor and {beta}-catenin activity in prostate cancer.
E. Lee, A. Madar, G. David, M. J. Garabedian, R. DasGupta, and S. K. Logan (2013)
PNAS 110, 15710-15715
   Abstract »    Full Text »    PDF »
Downregulation of PPP2R5E is a common event in acute myeloid leukemia that affects the oncogenic potential of leukemic cells.
I. Cristobal, C. Cirauqui, R. Castello-Cros, L. Garcia-Orti, M. J. Calasanz, and M. D. Odero (2013)
Haematologica 98, e103-e104
   Full Text »    PDF »
Tissue transglutaminase regulates {beta}-catenin signaling through a c-Src-dependent mechanism.
S. Condello, L. Cao, and D. Matei (2013)
FASEB J 27, 3100-3112
   Abstract »    Full Text »    PDF »
Recent progress toward epigenetic therapies: the example of mixed lineage leukemia.
T. Neff and S. A. Armstrong (2013)
Blood 121, 4847-4853
   Abstract »    Full Text »    PDF »
AML1-ETO mediates hematopoietic self-renewal and leukemogenesis through a COX/{beta}-catenin signaling pathway.
Y. Zhang, J. Wang, J. Wheat, X. Chen, S. Jin, H. Sadrzadeh, A. T. Fathi, R. T. Peterson, A. L. Kung, D. A. Sweetser, et al. (2013)
Blood 121, 4906-4916
   Abstract »    Full Text »    PDF »
The trithorax protein partner menin acts in tandem with EZH2 to suppress C/EBP{alpha} and differentiation in MLL-AF9 leukemia.
A. T. Thiel, Z. Feng, D. K. Pant, L. A. Chodosh, and X. Hua (2013)
Haematologica 98, 918-927
   Abstract »    Full Text »    PDF »
Preferential eradication of acute myelogenous leukemia stem cells by fenretinide.
H. Zhang, J.-Q. Mi, H. Fang, Z. Wang, C. Wang, L. Wu, B. Zhang, M. Minden, W.-T. Yang, H.-W. Wang, et al. (2013)
PNAS 110, 5606-5611
   Abstract »    Full Text »    PDF »
Prostaglandin E2 regulates murine hematopoietic stem/progenitor cells directly via EP4 receptor and indirectly through mesenchymal progenitor cells.
Y. M. Ikushima, F. Arai, K. Hosokawa, H. Toyama, K. Takubo, T. Furuyashiki, S. Narumiya, and T. Suda (2013)
Blood 121, 1995-2007
   Abstract »    Full Text »    PDF »
Cytotoxic T cells induce proliferation of chronic myeloid leukemia stem cells by secreting interferon-{gamma}.
C. Schurch, C. Riether, M. A. Amrein, and A. F. Ochsenbein (2013)
J. Exp. Med. 210, 605-621
   Abstract »    Full Text »    PDF »
Wnt Signaling in Normal and Malignant Hematopoiesis.
W. Lento, K. Congdon, C. Voermans, M. Kritzik, and T. Reya (2013)
Cold Spring Harb Perspect Biol 5, a008011
   Abstract »    Full Text »    PDF »
Frat2 mediates the oncogenic activation of Rac by MLL fusions.
V. Walf-Vorderwulbecke, J. de Boer, S. J. Horton, R. van Amerongen, N. Proost, A. Berns, and O. Williams (2012)
Blood 120, 4819-4828
   Abstract »    Full Text »    PDF »
Can One Cell Influence Cancer Heterogeneity?.
A. V. Krivtsov and S. A. Armstrong (2012)
Science 338, 1035-1036
   Abstract »    Full Text »    PDF »
The human GFI136N variant induces epigenetic changes at the Hoxa9 locus and accelerates K-RAS driven myeloproliferative disorder in mice.
C. Khandanpour, J. Krongold, J. Schutte, F. Bouwman, L. Vassen, M.-C. Gaudreau, R. Chen, F. J. Calero-Nieto, E. Diamanti, R. Hannah, et al. (2012)
Blood 120, 4006-4017
   Abstract »    Full Text »    PDF »
Genetic variation of CTNNB1 gene is associated with susceptibility and prognosis of gastric cancer in a Chinese population.
S. Wang, Y. Tian, D. Wu, H. Zhu, D. Luo, W. Gong, Y. Zhou, J. Zhou, and Z. Zhang (2012)
Mutagenesis 27, 623-630
   Abstract »    Full Text »    PDF »
Transition from Colitis to Cancer: High Wnt Activity Sustains the Tumor-Initiating Potential of Colon Cancer Stem Cell Precursors.
A. K. Shenoy, R. C. Fisher, E. A. Butterworth, L. Pi, L.-J. Chang, H. D. Appelman, M. Chang, E. W. Scott, and E. H. Huang (2012)
Cancer Res. 72, 5091-5100
   Abstract »    Full Text »    PDF »
High expression of lymphoid enhancer-binding factor-1 (LEF1) is a novel favorable prognostic factor in cytogenetically normal acute myeloid leukemia.
K. H. Metzeler, B. Heilmeier, K. E. Edmaier, V. P. S. Rawat, A. Dufour, K. Dohner, M. Feuring-Buske, J. Braess, K. Spiekermann, T. Buchner, et al. (2012)
Blood 120, 2118-2126
   Abstract »    Full Text »    PDF »
Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS.
L. Barreyro, B. Will, B. Bartholdy, L. Zhou, T. I. Todorova, R. F. Stanley, S. Ben-Neriah, C. Montagna, S. Parekh, A. Pellagatti, et al. (2012)
Blood 120, 1290-1298
   Abstract »    Full Text »    PDF »
{beta}-Arrestin2 mediates the initiation and progression of myeloid leukemia.
M. Fereshteh, T. Ito, J. J. Kovacs, C. Zhao, H. Y. Kwon, V. Tornini, T. Konuma, M. Chen, R. J. Lefkowitz, and T. Reya (2012)
PNAS 109, 12532-12537
   Abstract »    Full Text »    PDF »
Survivin is highly expressed in CD34+38- leukemic stem/progenitor cells and predicts poor clinical outcomes in AML.
B. Z. Carter, Y. Qiu, X. Huang, L. Diao, N. Zhang, K. R. Coombes, D. H. Mak, M. Konopleva, J. Cortes, H. M. Kantarjian, et al. (2012)
Blood 120, 173-180
   Abstract »    Full Text »    PDF »
Recent advances in acute myeloid leukemia stem cell biology.
S. J. Horton and B. J. P. Huntly (2012)
Haematologica 97, 966-974
   Abstract »    Full Text »    PDF »
Setbp1 promotes the self-renewal of murine myeloid progenitors via activation of Hoxa9 and Hoxa10.
K. Oakley, Y. Han, B. A. Vishwakarma, S. Chu, R. Bhatia, K. O. Gudmundsson, J. Keller, X. Chen, V. Vasko, N. A. Jenkins, et al. (2012)
Blood 119, 6099-6108
   Abstract »    Full Text »    PDF »
Drugging Wnt signalling in cancer.
P. Polakis (2012)
EMBO J. 31, 2737-2746
   Abstract »    Full Text »    PDF »
A role for GPx3 in activity of normal and leukemia stem cells.
O. Herault, K. J. Hope, E. Deneault, N. Mayotte, J. Chagraoui, B. T. Wilhelm, S. Cellot, M. Sauvageau, M. A. Andrade-Navarro, J. Hebert, et al. (2012)
J. Exp. Med. 209, 895-901
   Abstract »    Full Text »    PDF »
Wnt Signaling in Cancer.
P. Polakis (2012)
Cold Spring Harb Perspect Biol 4, a008052
   Abstract »    Full Text »    PDF »
The canonical Wnt pathway shapes niches supportive of hematopoietic stem/progenitor cells.
M. Ichii, M. B. Frank, R. V. Iozzo, and P. W. Kincade (2012)
Blood 119, 1683-1692
   Abstract »    Full Text »    PDF »
Molecular Pathways: BCR-ABL.
D. Cilloni and G. Saglio (2012)
Clin. Cancer Res. 18, 930-937
   Abstract »    Full Text »    PDF »
Wnt Inhibitor Screen Reveals Iron Dependence of {beta}-Catenin Signaling in Cancers.
S. Song, T. Christova, S. Perusini, S. Alizadeh, R.-Y. Bao, B. W. Miller, R. Hurren, Y. Jitkova, M. Gronda, M. Isaac, et al. (2011)
Cancer Res. 71, 7628-7639
   Abstract »    Full Text »    PDF »
Overexpression of LEF1 predicts unfavorable outcome in adult patients with B-precursor acute lymphoblastic leukemia.
A. Kuhnl, N. Gokbuget, M. Kaiser, C. Schlee, A. Stroux, T. Burmeister, L. H. Mochmann, D. Hoelzer, W.-K. Hofmann, E. Thiel, et al. (2011)
Blood 118, 6362-6367
   Abstract »    Full Text »    PDF »
Differential niche and Wnt requirements during acute myeloid leukemia progression.
S. W. Lane, Y. J. Wang, C. Lo Celso, C. Ragu, L. Bullinger, S. M. Sykes, F. Ferraro, S. Shterental, C. P. Lin, D. G. Gilliland, et al. (2011)
Blood 118, 2849-2856
   Abstract »    Full Text »    PDF »
Proteolytically cleaved MLL subunits are susceptible to distinct degradation pathways.
A. Yokoyama, F. Ficara, M. J. Murphy, C. Meisel, A. Naresh, I. Kitabayashi, and M. L. Cleary (2011)
J. Cell Sci. 124, 2208-2219
   Abstract »    Full Text »    PDF »
MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome.
Q.-f. Wang, G. Wu, S. Mi, F. He, J. Wu, J. Dong, R. T. Luo, R. Mattison, J. J. Kaberlein, S. Prabhakar, et al. (2011)
Blood 117, 6895-6905
   Abstract »    Full Text »    PDF »
Smad4 binds Hoxa9 in the cytoplasm and protects primitive hematopoietic cells against nuclear activation by Hoxa9 and leukemia transformation.
R. Quere, G. Karlsson, F. Hertwig, M. Rissler, B. Lindqvist, T. Fioretos, P. Vandenberghe, M. L. Slovak, J. Cammenga, and S. Karlsson (2011)
Blood 117, 5918-5930
   Abstract »    Full Text »    PDF »
Leukemia Stem Cells and Microenvironment: Biology and Therapeutic Targeting.
M. Y. Konopleva and C. T. Jordan (2011)
J. Clin. Oncol. 29, 591-599
   Abstract »    Full Text »    PDF »
Cancer Stem Cells and Self-renewal.
C. A. O'Brien, A. Kreso, and C. H. M. Jamieson (2010)
Clin. Cancer Res. 16, 3113-3120
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882