Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 328 (5974): 67-73

Copyright © 2010 by the American Association for the Advancement of Science

A Gating Charge Transfer Center in Voltage Sensors

Xiao Tao,1 Alice Lee,1 Walrati Limapichat,2 Dennis A. Dougherty,2 Roderick MacKinnon1,*

Abstract: Voltage sensors regulate the conformations of voltage-dependent ion channels and enzymes. Their nearly switchlike response as a function of membrane voltage comes from the movement of positively charged amino acids, arginine or lysine, across the membrane field. We used mutations with natural and unnatural amino acids, electrophysiological recordings, and x-ray crystallography to identify a charge transfer center in voltage sensors that facilitates this movement. This center consists of a rigid cyclic "cap" and two negatively charged amino acids to interact with a positive charge. Specific mutations induce a preference for lysine relative to arginine. By placing lysine at specific locations, the voltage sensor can be stabilized in different conformations, which enables a dissection of voltage sensor movements and their relation to ion channel opening.

1 Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
2 Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.

* To whom correspondence should be addressed. E-mail: mackinn{at}

Mitochondrial Channels: Ion Fluxes and More.
I. Szabo and M. Zoratti (2014)
Physiol Rev 94, 519-608
   Abstract »    Full Text »    PDF »
Systems Analysis of Guard Cell Membrane Transport for Enhanced Stomatal Dynamics and Water Use Efficiency.
Y. Wang, A. Hills, and M. R. Blatt (2014)
Plant Physiology 164, 1593-1599
   Abstract »    Full Text »    PDF »
Phosphatase activity of the voltage-sensing phosphatase, VSP, shows graded dependence on the extent of activation of the voltage sensor.
S. Sakata and Y. Okamura (2014)
J. Physiol. 592, 899-914
   Abstract »    Full Text »    PDF »
Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel.
I. Kim and A. Warshel (2014)
PNAS 111, 2128-2133
   Abstract »    Full Text »    PDF »
Evolutionary imprint of activation: The design principles of VSDs.
E. Palovcak, L. Delemotte, M. L. Klein, and V. Carnevale (2014)
J. Gen. Physiol. 143, 145-156
   Abstract »    Full Text »    PDF »
Divining the design principles of voltage sensors.
G. E. S. Toombes and K. J. Swartz (2014)
J. Gen. Physiol. 143, 139-144
   Full Text »    PDF »
Drug-induced ion channel opening tuned by the voltage sensor charge profile.
N. E. Ottosson, S. I. Liin, and F. Elinder (2014)
J. Gen. Physiol. 143, 173-182
   Abstract »    Full Text »    PDF »
Structure and function of voltage-gated sodium channels at atomic resolution.
W. A. Catterall (2014)
Exp Physiol 99, 35-51
   Abstract »    Full Text »    PDF »
Peregrination of the selectivity filter delineates the pore of the human voltage-gated proton channel hHV1.
D. Morgan, B. Musset, K. Kulleperuma, S. M. E. Smith, S. Rajan, V. V. Cherny, R. Pomes, and T. E. DeCoursey (2013)
J. Gen. Physiol. 142, 625-640
   Abstract »    Full Text »    PDF »
Multistate Structural Modeling and Voltage-Clamp Analysis of Epilepsy/Autism Mutation Kv10.2-R327H Demonstrate the Role of This Residue in Stabilizing the Channel Closed State.
Y. Yang, D. V. Vasylyev, F. Dib-Hajj, K. R. Veeramah, M. F. Hammer, S. D. Dib-Hajj, and S. G. Waxman (2013)
J. Neurosci. 33, 16586-16593
   Abstract »    Full Text »    PDF »
Functional interactions of voltage sensor charges with an S2 hydrophobic plug in hERG channels.
Y. M. Cheng, C. M. Hull, C. M. Niven, J. Qi, C. R. Allard, and T. W. Claydon (2013)
J. Gen. Physiol. 142, 289-303
   Abstract »    Full Text »    PDF »
Dynamics of internal pore opening in KV channels probed by a fluorescent unnatural amino acid.
T. Kalstrup and R. Blunck (2013)
PNAS 110, 8272-8277
   Abstract »    Full Text »    PDF »
Transduction of Voltage and Ca2+ Signals by Slo1 BK Channels.
T. Hoshi, A. Pantazis, and R. Olcese (2013)
Physiology 28, 172-189
   Abstract »    Full Text »    PDF »
Fine-tuning of Voltage Sensitivity of the Kv1.2 Potassium Channel by Interhelix Loop Dynamics.
R. Sand, N. Sharmin, C. Morgan, and W. J. Gallin (2013)
J. Biol. Chem. 288, 9686-9695
   Abstract »    Full Text »    PDF »
Voltage-Gated Proton Channels: Molecular Biology, Physiology, and Pathophysiology of the HV Family.
T. E. DeCoursey (2013)
Physiol Rev 93, 599-652
   Abstract »    Full Text »    PDF »
Construction and validation of a homology model of the human voltage-gated proton channel hHV1.
K. Kulleperuma, S. M. E. Smith, D. Morgan, B. Musset, J. Holyoake, N. Chakrabarti, V. V. Cherny, T. E. DeCoursey, and R. Pomes (2013)
J. Gen. Physiol. 141, 445-465
   Abstract »    Full Text »    PDF »
Voltage sensor ring in a native structure of a membrane-embedded potassium channel.
L. Shi, H. Zheng, H. Zheng, B. A. Borkowski, D. Shi, T. Gonen, and Q.-X. Jiang (2013)
PNAS 110, 3369-3374
   Abstract »    Full Text »    PDF »
Opening the Shaker K+ channel with hanatoxin.
M. Milescu, H. C. Lee, C. H. Bae, J. I. Kim, and K. J. Swartz (2013)
J. Gen. Physiol. 141, 203-216
   Abstract »    Full Text »    PDF »
Exploring conformational states of the bacterial voltage-gated sodium channel NavAb via molecular dynamics simulations.
C. Amaral, V. Carnevale, M. L. Klein, and W. Treptow (2012)
PNAS 109, 21336-21341
   Abstract »    Full Text »    PDF »
Unraveling the strokes of ion channel molecular machines in computers.
E. Lindahl (2012)
PNAS 109, 21186-21187
   Full Text »    PDF »
Probing the structural basis for differential KCNQ1 modulation by KCNE1 and KCNE2.
Y. Wang, M. Zhang, Y. Xu, M. Jiang, D. P. Zankov, M. Cui, and G.-N. Tseng (2012)
J. Gen. Physiol. 140, 653-669
   Abstract »    Full Text »    PDF »
Intermediate state trapping of a voltage sensor.
J. J. Lacroix, S. A. Pless, L. Maragliano, F. V. Campos, J. D. Galpin, C. A. Ahern, B. Roux, and F. Bezanilla (2012)
J. Gen. Physiol. 140, 635-652
   Abstract »    Full Text »    PDF »
Gating pore currents and the resting state of Nav1.4 voltage sensor domains.
P. Gosselin-Badaroudine, L. Delemotte, A. Moreau, M. L. Klein, and M. Chahine (2012)
PNAS 109, 19250-19255
   Abstract »    Full Text »    PDF »
Evolution of the Voltage Sensor Domain of the Voltage-Sensitive Phosphoinositide Phosphatase VSP/TPTE Suggests a Role as a Proton Channel in Eutherian Mammals.
K. A. Sutton, M. K. Jungnickel, L. Jovine, and H. M. Florman (2012)
Mol. Biol. Evol. 29, 2147-2155
   Abstract »    Full Text »    PDF »
Initial steps in the opening of a Shaker potassium channel.
T. Hoshi and C. M. Armstrong (2012)
PNAS 109, 12800-12804
   Abstract »    Full Text »    PDF »
Voltage-sensor cycle fully described.
C. Domene (2012)
PNAS 109, 8362-8363
   Full Text »    PDF »
Tracking a complete voltage-sensor cycle with metal-ion bridges.
U. Henrion, J. Renhorn, S. I. Borjesson, E. M. Nelson, C. S. Schwaiger, P. Bjelkmar, B. Wallner, E. Lindahl, and F. Elinder (2012)
PNAS 109, 8552-8557
   Abstract »    Full Text »    PDF »
Mechanism of Voltage Gating in Potassium Channels.
M. O. Jensen, V. Jogini, D. W. Borhani, A. E. Leffler, R. O. Dror, and D. E. Shaw (2012)
Science 336, 229-233
   Abstract »    Full Text »    PDF »
Estimating the voltage-dependent free energy change of ion channels using the median voltage for activation.
S. Chowdhury and B. Chanda (2011)
J. Gen. Physiol. 139, 3-17
   Abstract »    Full Text »    PDF »
Arginine residues at internal positions in a protein are always charged.
M. J. Harms, J. L. Schlessman, G. R. Sue, and B. Garcia-Moreno E. (2011)
PNAS 108, 18954-18959
   Abstract »    Full Text »    PDF »
Voltage-gated proton channel in a dinoflagellate.
S. M. E. Smith, D. Morgan, B. Musset, V. V. Cherny, A. R. Place, J. W. Hastings, and T. E. DeCoursey (2011)
PNAS 108, 18162-18167
   Abstract »    Full Text »    PDF »
jShaw1, a low-threshold, fast-activating Kv3 from the hydrozoan jellyfish Polyorchis penicillatus.
R. M. Sand, D. M. Atherton, A. N. Spencer, and W. J. Gallin (2011)
J. Exp. Biol. 214, 3124-3137
   Abstract »    Full Text »    PDF »
Drosophila QVR/SSS Modulates the Activation and C-Type Inactivation Kinetics of Shaker K+ Channels.
T. Dean, R. Xu, W. Joiner, A. Sehgal, and T. Hoshi (2011)
J. Neurosci. 31, 11387-11395
   Abstract »    Full Text »    PDF »
A conserved residue, PomB-F22, in the transmembrane segment of the flagellar stator complex, has a critical role in conducting ions and generating torque.
T. Terauchi, H. Terashima, S. Kojima, and M. Homma (2011)
Microbiology 157, 2422-2432
   Abstract »    Full Text »    PDF »
R1 in the Shaker S4 occupies the gating charge transfer center in the resting state.
M.-c. A. Lin, J.-Y. Hsieh, A. F. Mock, and D. M. Papazian (2011)
J. Gen. Physiol. 138, 155-163
   Abstract »    Full Text »    PDF »
Moving Iron through Ferritin Protein Nanocages Depends on Residues throughout Each Four {alpha}-Helix Bundle Subunit.
S. Haldar, L. E. Bevers, T. Tosha, and E. C. Theil (2011)
J. Biol. Chem. 286, 25620-25627
   Abstract »    Full Text »    PDF »
An electrostatic potassium channel opener targeting the final voltage sensor transition.
S. I. Borjesson and F. Elinder (2011)
J. Gen. Physiol. 137, 563-577
   Abstract »    Full Text »    PDF »
Mode shift of the voltage sensors in Shaker K+ channels is caused by energetic coupling to the pore domain.
G. A. Haddad and R. Blunck (2011)
J. Gen. Physiol. 137, 455-472
   Abstract »    Full Text »    PDF »
Control of a final gating charge transition by a hydrophobic residue in the S2 segment of a K+ channel voltage sensor.
J. J. Lacroix and F. Bezanilla (2011)
PNAS 108, 6444-6449
   Abstract »    Full Text »    PDF »
Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations.
L. Delemotte, M. Tarek, M. L. Klein, C. Amaral, and W. Treptow (2011)
PNAS 108, 6109-6114
   Abstract »    Full Text »    PDF »
Kinetic modeling of Nav1.7 provides insight into erythromelalgia-associated F1449V mutation.
M. Gurkiewicz, A. Korngreen, S. G. Waxman, and A. Lampert (2011)
J Neurophysiol 105, 1546-1557
   Abstract »    Full Text »    PDF »
The biophysical and molecular basis of TRPV1 proton gating.
E. Aneiros, L. Cao, M. Papakosta, E. B. Stevens, S. Phillips, and C. Grimm (2011)
EMBO J. 30, 994-1002
   Abstract »    Full Text »    PDF »
Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement.
X. Chen, Q. Wang, F. Ni, and J. Ma (2010)
PNAS 107, 11352-11357
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882