Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 328 (5974): 85-89

Copyright © 2010 by the American Association for the Advancement of Science

Orchestration of Floral Initiation by APETALA1

Kerstin Kaufmann,1,2,* Frank Wellmer,3,* Jose M. Muiño,4 Thilia Ferrier,5 Samuel E. Wuest,3 Vijaya Kumar,6 Antonio Serrano-Mislata,7 Francisco Madueño,7 Pawel Krajewski,8 Elliot M. Meyerowitz,6 Gerco C. Angenent,1,9 José Luis Riechmann5,6,10,{dagger}

Abstract: The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding studies. Many of its targets encode transcriptional regulators, including known floral repressors. The latter genes are down-regulated by AP1, suggesting that it initiates floral development by abrogating the inhibitory effects of these genes. Although AP1 acts predominantly as a transcriptional repressor during the earliest stages of flower development, at more advanced stages it also activates regulatory genes required for floral organ formation, indicating a dynamic mode of action. Our results further imply that AP1 orchestrates floral initiation by integrating growth, patterning, and hormonal pathways.

1 Business Unit Bioscience, Plant Research International, Wageningen 6700 AA, Netherlands.
2 Laboratory of Molecular Biology, Wageningen University, Wageningen 6700 AP, Netherlands.
3 Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland.
4 Applied Bioinformatics, Plant Research International, Wageningen 6700 AA, Netherlands.
5 Center for Research in Agricultural Genomics (CRAG), Barcelona 08034, Spain.
6 California Institute of Technology, Division of Biology, Pasadena, CA 91125, USA.
7 Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Valencia 46022, Spain.
8 Institute of Plant Genetics, Polish Academy of Sciences, Poznan 60-479, Poland.
9 Centre for BioSystems Genomics (CBSG), Wageningen 6700 AB, Netherlands.
10 Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: jriechma{at}

Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis.
J. Bou-Torrent, A. Galstyan, M. Gallemi, N. Cifuentes-Esquivel, M. J. Molina-Contreras, M. Salla-Martret, Y. Jikumaru, S. Yamaguchi, Y. Kamiya, and J. F. Martinez-Garcia (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Regulatory modules controlling maize inflorescence architecture.
A. L. Eveland, A. Goldshmidt, M. Pautler, K. Morohashi, C. Liseron-Monfils, M. W. Lewis, S. Kumari, S. Hiraga, F. Yang, E. Unger-Wallace, et al. (2014)
Genome Res. 24, 431-443
   Abstract »    Full Text »    PDF »
Structural determinants of DNA recognition by plant MADS-domain transcription factors.
J. M. Muino, C. Smaczniak, G. C. Angenent, K. Kaufmann, and A. D. J. van Dijk (2014)
Nucleic Acids Res. 42, 2138-2146
   Abstract »    Full Text »    PDF »
Structural Features Determining Flower-Promoting Activity of Arabidopsis FLOWERING LOCUS T.
W. W. H. Ho and D. Weigel (2014)
PLANT CELL 26, 552-564
   Abstract »    Full Text »    PDF »
Specification of floral organs in Arabidopsis.
F. Wellmer, E. Graciet, and J. L. Riechmann (2014)
J. Exp. Bot. 65, 1-9
   Abstract »    Full Text »    PDF »
PIFs: Systems Integrators in Plant Development.
P. Leivar and E. Monte (2014)
PLANT CELL 26, 56-78
   Abstract »    Full Text »    PDF »
Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes.
S. M. Bemis, J. S. Lee, E. D. Shpak, and K. U. Torii (2013)
J. Exp. Bot. 64, 5323-5333
   Abstract »    Full Text »    PDF »
The regulation of seasonal flowering in the Rosaceae.
T. Kurokura, N. Mimida, N. H. Battey, and T. Hytonen (2013)
J. Exp. Bot. 64, 4131-4141
   Abstract »    Full Text »    PDF »
The Fragaria vesca Homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 Represses Flowering and Promotes Vegetative Growth.
K. Mouhu, T. Kurokura, E. A. Koskela, V. A. Albert, P. Elomaa, and T. Hytonen (2013)
PLANT CELL 25, 3296-3310
   Abstract »    Full Text »    PDF »
Control of Reproductive Floral Organ Identity Specification in Arabidopsis by the C Function Regulator AGAMOUS.
D. S. O'Maoileidigh, S. E. Wuest, L. Rae, A. Raganelli, P. T. Ryan, K. Kwasniewska, P. Das, A. J. Lohan, B. Loftus, E. Graciet, et al. (2013)
PLANT CELL 25, 2482-2503
   Abstract »    Full Text »    PDF »
The euAP1 Protein MPF3 Represses MPF2 to Specify Floral Calyx Identity and Displays Crucial Roles in Chinese Lantern Development in Physalis.
J. Zhao, Y. Tian, J.-S. Zhang, M. Zhao, P. Gong, S. Riss, R. Saedler, and C. He (2013)
PLANT CELL 25, 2002-2021
   Abstract »    Full Text »    PDF »
A Role for APETALA1/FRUITFULL Transcription Factors in Tomato Leaf Development.
Y. Burko, S. Shleizer-Burko, O. Yanai, I. Shwartz, I. D. Zelnik, J. Jacob-Hirsch, I. Kela, L. Eshed-Williams, and N. Ori (2013)
PLANT CELL 25, 2070-2083
   Abstract »    Full Text »    PDF »
Control of flower size.
B. A. Krizek and J. T. Anderson (2013)
J. Exp. Bot. 64, 1427-1437
   Abstract »    Full Text »    PDF »
Interlocking Feedback Loops Govern the Dynamic Behavior of the Floral Transition in Arabidopsis.
K. E. Jaeger, N. Pullen, S. Lamzin, R. J. Morris, and P. A. Wigge (2013)
PLANT CELL 25, 820-833
   Abstract »    Full Text »    PDF »
The Florigen Genes FT and TSF Modulate Lateral Shoot Outgrowth in Arabidopsis thaliana.
K. Hiraoka, A. Yamaguchi, M. Abe, and T. Araki (2013)
Plant Cell Physiol. 54, 352-368
   Abstract »    Full Text »    PDF »
Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis.
K. N. Chang, S. Zhong, M. T. Weirauch, G. Hon, M. Pelizzola, H. Li, S.-s. C. Huang, R. J. Schmitz, M. A. Urich, D. Kuo, et al. (2013)
eLife Sci 2, e00675
   Abstract »    Full Text »    PDF »
APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19.
N. T. Krogan, K. Hogan, and J. A. Long (2012)
Development 139, 4180-4190
   Abstract »    Full Text »    PDF »
Systems Analysis of Plant Functional, Transcriptional, Physical Interaction, and Metabolic Networks.
G. W. Bassel, A. Gaudinier, S. M. Brady, L. Hennig, S. Y. Rhee, and I. De Smet (2012)
PLANT CELL 24, 3859-3875
   Abstract »    Full Text »    PDF »
Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies.
C. Smaczniak, R. G. H. Immink, G. C. Angenent, and K. Kaufmann (2012)
Development 139, 3081-3098
   Abstract »    Full Text »    PDF »
Characterization of SOC1's Central Role in Flowering by the Identification of Its Upstream and Downstream Regulators.
R. G. H. Immink, D. Pose, S. Ferrario, F. Ott, K. Kaufmann, F. L. Valentim, S. de Folter, F. van der Wal, A. D. J. van Dijk, M. Schmid, et al. (2012)
Plant Physiology 160, 433-449
   Abstract »    Full Text »    PDF »
Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA.
S. E. Wuest, D. S. O'Maoileidigh, L. Rae, K. Kwasniewska, A. Raganelli, K. Hanczaryk, A. J. Lohan, B. Loftus, E. Graciet, and F. Wellmer (2012)
PNAS 109, 13452-13457
   Abstract »    Full Text »    PDF »
Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically.
S. Danisman, F. van der Wal, S. Dhondt, R. Waites, S. de Folter, A. Bimbo, A. D. van Dijk, J. M. Muino, L. Cutri, M. C. Dornelas, et al. (2012)
Plant Physiology 159, 1511-1523
   Abstract »    Full Text »    PDF »
Genome-Wide Identification of Regulatory DNA Elements and Protein-Binding Footprints Using Signatures of Open Chromatin in Arabidopsis.
W. Zhang, T. Zhang, Y. Wu, and J. Jiang (2012)
PLANT CELL 24, 2719-2731
   Abstract »    Full Text »    PDF »
A Genome-Wide Regulatory Framework Identifies Maize Pericarp Color1 Controlled Genes.
K. Morohashi, M. I. Casas, M. L. Falcone Ferreyra, M. K. Mejia-Guerra, L. Pourcel, A. Yilmaz, A. Feller, B. Carvalho, J. Emiliani, E. Rodriguez, et al. (2012)
PLANT CELL 24, 2745-2764
   Abstract »    Full Text »    PDF »
Systematic Identification of Functional Plant Modules through the Integration of Complementary Data Sources.
K. S. Heyndrickx and K. Vandepoele (2012)
Plant Physiology 159, 884-901
   Abstract »    Full Text »    PDF »
SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors.
M.-F. Wu, Y. Sang, S. Bezhani, N. Yamaguchi, S.-K. Han, Z. Li, Y. Su, T. L. Slewinski, and D. Wagner (2012)
PNAS 109, 3576-3581
   Abstract »    Full Text »    PDF »
Genome-wide mapping of transcription factor binding reveals developmental process integration and a fresh look at evolutionary dynamics.
L. Yant (2012)
Am. J. Botany 99, 277-290
   Abstract »    Full Text »    PDF »
CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums.
A. Oda, T. Narumi, T. Li, T. Kando, Y. Higuchi, K. Sumitomo, S. Fukai, and T. Hisamatsu (2012)
J. Exp. Bot. 63, 1461-1477
   Abstract »    Full Text »    PDF »
Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development.
C. Smaczniak, R. G. H. Immink, J. M. Muino, R. Blanvillain, M. Busscher, J. Busscher-Lange, Q. D. Dinh, S. Liu, A. H. Westphal, S. Boeren, et al. (2012)
PNAS 109, 1560-1565
   Abstract »    Full Text »    PDF »
June bloom in Maratea.
F. Parcy and J. U. Lohmann (2011)
Development 138, 4335-4340
   Abstract »    Full Text »    PDF »
SEED: efficient clustering of next-generation sequences.
E. Bao, T. Jiang, I. Kaloshian, and T. Girke (2011)
Bioinformatics 27, 2502-2509
   Abstract »    Full Text »    PDF »
Fruit regulates seasonal expression of flowering genes in alternate-bearing 'Moncada' mandarin.
N. Munoz-Fambuena, C. Mesejo, M. Carmen Gonzalez-Mas, E. Primo-Millo, M. Agusti, and D. J. Iglesias (2011)
Ann. Bot. 108, 511-519
   Abstract »    Full Text »    PDF »
LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1.
J. J. Pastore, A. Limpuangthip, N. Yamaguchi, M.-F. Wu, Y. Sang, S.-K. Han, L. Malaspina, N. Chavdaroff, A. Yamaguchi, and D. Wagner (2011)
Development 138, 3189-3198
   Abstract »    Full Text »    PDF »
Robustness and evolvability in the B-system of flower development.
K. Geuten, T. Viaene, and V. F. Irish (2011)
Ann. Bot. 107, 1545-1556
   Abstract »    Full Text »    PDF »
The evolution of flower development: current understanding and future challenges.
A. Becker, K. Alix, and C. Damerval (2011)
Ann. Bot. 107, 1427-1431
   Full Text »    PDF »
Expression of floral identity genes in Clianthus maximus during mass inflorescence abortion and floral development.
J. Song, J. Clemens, and P. E. Jameson (2011)
Ann. Bot. 107, 1501-1509
   Abstract »    Full Text »    PDF »
The Regulatory Region Controlling the Nitrate-Responsive Expression of a Nitrate Reductase Gene, NIA1, in Arabidopsis.
M. Konishi and S. Yanagisawa (2011)
Plant Cell Physiol. 52, 824-836
   Abstract »    Full Text »    PDF »
FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis.
W. Deng, H. Ying, C. A. Helliwell, J. M. Taylor, W. J. Peacock, and E. S. Dennis (2011)
PNAS 108, 6680-6685
   Abstract »    Full Text »    PDF »
Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for the Arabidopsis LEAFY Transcription Factor.
E. Moyroud, E. G. Minguet, F. Ott, L. Yant, D. Pose, M. Monniaux, S. Blanchet, O. Bastien, E. Thevenon, D. Weigel, et al. (2011)
PLANT CELL 23, 1293-1306
   Abstract »    Full Text »    PDF »
Reduce, reuse, and recycle: Developmental evolution of trait diversification.
J. C. Preston, L. C. Hileman, and P. Cubas (2011)
Am. J. Botany 98, 397-403
   Abstract »    Full Text »    PDF »
Orchestration of the Floral Transition and Floral Development in Arabidopsis by the Bifunctional Transcription Factor APETALA2.
L. Yant, J. Mathieu, T. T. Dinh, F. Ott, C. Lanz, H. Wollmann, X. Chen, and M. Schmid (2010)
PLANT CELL 22, 2156-2170
   Abstract »    Full Text »    PDF »
VERDANDI Is a Direct Target of the MADS Domain Ovule Identity Complex and Affects Embryo Sac Differentiation in Arabidopsis.
L. Matias-Hernandez, R. Battaglia, F. Galbiati, M. Rubes, C. Eichenberger, U. Grossniklaus, M. M. Kater, and L. Colombo (2010)
PLANT CELL 22, 1702-1715
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882