Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 328 (5975): 240-243

Copyright © 2010 by the American Association for the Advancement of Science

Arsenic Trioxide Controls the Fate of the PML-RAR{alpha} Oncoprotein by Directly Binding PML

Xiao-Wei Zhang,1,* Xiao-Jing Yan,1,* Zi-Ren Zhou,2 Fei-Fei Yang,3 Zi-Yu Wu,3 Hong-Bin Sun,4 Wen-Xue Liang,1 Ai-Xin Song,2 Valérie Lallemand-Breitenbach,5 Marion Jeanne,5 Qun-Ye Zhang,1 Huai-Yu Yang,6 Qiu-Hua Huang,1 Guang-Biao Zhou,7 Jian-Hua Tong,1 Yan Zhang,1 Ji-Hui Wu,4 Hong-Yu Hu,2 Hugues de Thé,5,8 Sai-Juan Chen,1,8,{dagger} Zhu Chen1,8,{dagger}

Abstract: Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RAR{alpha} (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RAR{alpha} degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RAR{alpha} and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)–conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug’s mechanism of action and its specificity for APL.

1 State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China.
2 State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200031, China.
3 National Synchrotron Radiation Laboratory, University of Science and Technology of China and Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing 10004, China.
4 Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
5 Université de Paris 7/INSERM/CNRS UMR 944/7151, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Avenue C. Vellefaux, 75475 Paris CEDEX 10, France.
6 Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, CAS, Shanghai 201203, China.
7 Laboratory of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, and Key Laboratory of Stem Cell Development, Institute of Zoology, CAS, Beijing, China.
8 The Pôle Sino-Français de génomique et de Sciences du vivant de l’Hôpital Rui-Jin, 197 Rui-Jin Road II, Shanghai, China.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: zchen{at}stn.sh.cn (Z.C.); sjchen{at}stn.sh.cn (S.-J.C.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins.
U. Sahin, O. Ferhi, M. Jeanne, S. Benhenda, C. Berthier, F. Jollivet, M. Niwa-Kawakita, O. Faklaris, N. Setterblad, H. de The, et al. (2014)
J. Cell Biol. 204, 931-945
   Abstract »    Full Text »    PDF »
Cuz1/Ynl155w, a Zinc-dependent Ubiquitin-binding Protein, Protects Cells from Metalloid-induced Proteotoxicity.
J. Hanna, D. Waterman, M. Isasa, S. Elsasser, Y. Shi, S. Gygi, and D. Finley (2014)
J. Biol. Chem. 289, 1876-1885
   Abstract »    Full Text »    PDF »
Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia.
G. A. dos Santos, L. Kats, and P. P. Pandolfi (2013)
J. Exp. Med. 210, 2793-2802
   Abstract »    Full Text »    PDF »
Oral Tetra-Arsenic Tetra-Sulfide Formula Versus Intravenous Arsenic Trioxide As First-Line Treatment of Acute Promyelocytic Leukemia: A Multicenter Randomized Controlled Trial.
H.-H. Zhu, D.-P. Wu, J. Jin, J.-Y. Li, J. Ma, J.-X. Wang, H. Jiang, S.-J. Chen, and X.-J. Huang (2013)
J. Clin. Oncol. 31, 4215-4221
   Abstract »    Full Text »    PDF »
A SUMOylation-Dependent Pathway Regulates SIRT1 Transcription and Lung Cancer Metastasis.
L. Sun, H. Li, J. Chen, V. Dehennaut, Y. Zhao, Y. Yang, Y. Iwasaki, B. Kahn-Perles, D. Leprince, Q. Chen, et al. (2013)
J Natl Cancer Inst 105, 887-898
   Abstract »    Full Text »    PDF »
Trafficking of the Transcription Factor Nrf2 to Promyelocytic Leukemia-Nuclear Bodies: IMPLICATIONS FOR DEGRADATION OF NRF2 IN THE NUCLEUS.
M. T. Malloy, D. J. McIntosh, T. S. Walters, A. Flores, J. S. Goodwin, and I. J. Arinze (2013)
J. Biol. Chem. 288, 14569-14583
   Abstract »    Full Text »    PDF »
Metabolomics Coupled with Proteomics Advancing Drug Discovery toward More Agile Development of Targeted Combination Therapies.
X. Wang, A. Zhang, P. Wang, H. Sun, G. Wu, W. Sun, H. Lv, G. Jiao, H. Xu, Y. Yuan, et al. (2013)
Mol. Cell. Proteomics 12, 1226-1238
   Abstract »    Full Text »    PDF »
PML mediates glioblastoma resistance to mammalian target of rapamycin (mTOR)-targeted therapies.
A. Iwanami, B. Gini, C. Zanca, T. Matsutani, A. Assuncao, A. Nael, J. Dang, H. Yang, S. Zhu, J. Kohyama, et al. (2013)
PNAS 110, 4339-4344
   Abstract »    Full Text »    PDF »
Arsenic Suppresses Cell Survival via Pirh2-mediated Proteasomal Degradation of {Delta}Np63 Protein.
W. Yan, X. Chen, Y. Zhang, J. Zhang, Y.-S. Jung, and X. Chen (2013)
J. Biol. Chem. 288, 2907-2913
   Abstract »    Full Text »    PDF »
CaMKII {gamma}, a critical regulator of CML stem/progenitor cells, is a target of the natural product berbamine.
Y. Gu, T. Chen, Z. Meng, Y. Gan, X. Xu, G. Lou, H. Li, X. Gan, H. Zhou, J. Tang, et al. (2012)
Blood 120, 4829-4839
   Abstract »    Full Text »    PDF »
Arsenic-induced interstitial myocardial fibrosis reveals a new insight into drug-induced long QT syndrome.
W. Chu, C. Li, X. Qu, D. Zhao, X. Wang, X. Yu, F. Cai, H. Liang, Y. Zhang, X. Zhao, et al. (2012)
Cardiovasc Res 96, 90-98
   Abstract »    Full Text »    PDF »
Mutation associations in RA-defiant APL.
S.-J. Chen (2012)
Blood 120, 1969-1970
   Full Text »    PDF »
The arsenic-based cure of acute promyelocytic leukemia promotes cytoplasmic sequestration of PML and PML/RARA through inhibition of PML body recycling.
E. Lang, A. Grudic, S. Pankiv, O. Bruserud, A. Simonsen, R. Bjerkvig, M. Bjoras, and S. O. Boe (2012)
Blood 120, 847-857
   Abstract »    Full Text »    PDF »
The cell biology of disease: Acute promyelocytic leukemia, arsenic, and PML bodies.
H. de The, M. Le Bras, and V. Lallemand-Breitenbach (2012)
J. Cell Biol. 198, 11-21
   Abstract »    Full Text »    PDF »
The Organic Arsenic Derivative GMZ27 Induces PML-RAR{alpha}-Independent Apoptosis in Myeloid Leukemia Cells.
X. CHENG, A. QUINTAS-CARDAMA, M. GOLEMOVIC, R. ZINGARO, M.-Z. GAO, E. J. FREIREICH, M. ANDREEFF, H. M. KANTARJIAN, and S. VERSTOVSEK (2012)
Anticancer Res 32, 2871-2880
   Abstract »    Full Text »    PDF »
Arginylated Calreticulin at Plasma Membrane Increases Susceptibility of Cells to Apoptosis.
C. Lopez Sambrooks, M. A. Carpio, and M. E. Hallak (2012)
J. Biol. Chem. 287, 22043-22054
   Abstract »    Full Text »    PDF »
The SUMO E3-ligase PIAS1 Regulates the Tumor Suppressor PML and Its Oncogenic Counterpart PML-RARA.
A. Rabellino, B. Carter, G. Konstantinidou, S.-Y. Wu, A. Rimessi, L. A. Byers, J. V. Heymach, L. Girard, C.-M. Chiang, J. Teruya-Feldstein, et al. (2012)
Cancer Res. 72, 2275-2284
   Abstract »    Full Text »    PDF »
Overexpression of SKI Oncoprotein Leads to p53 Degradation through Regulation of MDM2 Protein Sumoylation.
B. Ding, Y. Sun, and J. Huang (2012)
J. Biol. Chem. 287, 14621-14630
   Abstract »    Full Text »    PDF »
CEBPE activation in PML-RARA cells by arsenic.
Z. Hu and Y. Saunthararajah (2012)
Blood 119, 2177-2179
   Full Text »    PDF »
Mitogen-activated Protein Kinase Extracellular Signal-regulated Kinase 2 Phosphorylates and Promotes Pin1 Protein-dependent Promyelocytic Leukemia Protein Turnover.
J. H. Lim, Y. Liu, E. Reineke, and H.-Y. Kao (2011)
J. Biol. Chem. 286, 44403-44411
   Abstract »    Full Text »    PDF »
Arsenic disulfide synergizes with the phosphoinositide 3-kinase inhibitor PI-103 to eradicate acute myeloid leukemia stem cells by inducing differentiation.
Z. Hong, M. Xiao, Y. Yang, Z. Han, Y. Cao, C. Li, Y. Wu, Q. Gong, X. Zhou, D. Xu, et al. (2011)
Carcinogenesis 32, 1550-1558
   Abstract »    Full Text »    PDF »
PMLRAR{alpha} binds to Fas and suppresses Fas-mediated apoptosis through recruiting c-FLIP in vivo.
R.-H. Tao, Z. Berkova, J. F. Wise, A.-H. Rezaeian, U. Daniluk, X. Ao, D. H. Hawke, J. E. Karp, H.-K. Lin, J. J. Molldrem, et al. (2011)
Blood 118, 3107-3118
   Abstract »    Full Text »    PDF »
Missense mutations in PML-RARA are critical for the lack of responsiveness to arsenic trioxide treatment.
E. Goto, A. Tomita, F. Hayakawa, A. Atsumi, H. Kiyoi, and T. Naoe (2011)
Blood 118, 1600-1609
   Abstract »    Full Text »    PDF »
From an old remedy to a magic bullet: molecular mechanisms underlying the therapeutic effects of arsenic in fighting leukemia.
S.-J. Chen, G.-B. Zhou, X.-W. Zhang, J.-H. Mao, H. de The, and Z. Chen (2011)
Blood 117, 6425-6437
   Abstract »    Full Text »    PDF »
Revisiting the differentiation paradigm in acute promyelocytic leukemia.
J. Ablain and H. de The (2011)
Blood 117, 5795-5802
   Abstract »    Full Text »    PDF »
SYT-SSX1 (Synovial Sarcoma Translocated) Regulates PIASy Ligase Activity to Cause Overexpression of NCOA3 Protein.
Y. Sun, J. Perera, B. P. Rubin, and J. Huang (2011)
J. Biol. Chem. 286, 18623-18632
   Abstract »    Full Text »    PDF »
Mutant p53 Protein Is Targeted by Arsenic for Degradation and Plays a Role in Arsenic-mediated Growth Suppression.
W. Yan, Y. Zhang, J. Zhang, S. Liu, S. J. Cho, and X. Chen (2011)
J. Biol. Chem. 286, 17478-17486
   Abstract »    Full Text »    PDF »
A High-Content Screening (HCS) Assay for the Identification of Chemical Inducers of PML Oncogenic Domains (PODs).
K. W. Yip, M. Cuddy, C. Pinilla, M. Giulanotti, S. Heynen-Genel, S.-I. Matsuzawa, and J. C. Reed (2011)
J Biomol Screen 16, 251-258
   Abstract »    Full Text »    PDF »
As4S4 targets RING-type E3 ligase c-CBL to induce degradation of BCR-ABL in chronic myelogenous leukemia.
J.-H. Mao, X.-Y. Sun, J.-X. Liu, Q.-Y. Zhang, P. Liu, Q.-H. Huang, K. K. Li, Q. Chen, Z. Chen, and S.-J. Chen (2010)
PNAS 107, 21683-21688
   Abstract »    Full Text »    PDF »
Hemin Binds to Human Cytoplasmic Arginyl-tRNA Synthetase and Inhibits Its Catalytic Activity.
F. Yang, X. Xia, H.-Y. Lei, and E.-D. Wang (2010)
J. Biol. Chem. 285, 39437-39446
   Abstract »    Full Text »    PDF »
The Molecular Basis of Lmo2-Induced T-Cell Acute Lymphoblastic Leukemia.
D. J. Curtis and M. P. McCormack (2010)
Clin. Cancer Res. 16, 5618-5623
   Abstract »    Full Text »    PDF »
Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector.
J. Kim, J. J. Lee, J. Kim, D. Gardner, and P. A. Beachy (2010)
PNAS 107, 13432-13437
   Abstract »    Full Text »    PDF »
Poisonous Contacts.
S. C. Kogan (2010)
Science 328, 184-185
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882