Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 328 (5976): 368-372

Copyright © 2010 by the American Association for the Advancement of Science

Rapid Diversification of Cell Signaling Phenotypes by Modular Domain Recombination

Sergio G. Peisajovich,1,* Joan E. Garbarino,1,2 Ping Wei,1,3 Wendell A. Lim1,2,{dagger}

Abstract: Cell signaling proteins are often modular, containing distinct catalytic and regulatory domains. Recombination of such biological modules has been proposed to be a major source of evolutionary innovation. We systematically analyzed the phenotypic diversity of a signaling response that results from domain recombination by using 11 proteins in the yeast mating pathway to construct a library of 66 chimeric domain recombinants. Domain recombination resulted in greater diversity in pathway response dynamics than did duplication of genes, of single domains, or of two unlinked domains. Domain recombination also led to changes in mating phenotype, including recombinants with increased mating efficiency over the wild type. Thus, novel linkages between preexisting domains may have a major role in the evolution of protein networks and novel phenotypic behaviors.

1 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA.
2 Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
3 Center for Theoretical Biology, Peking University, Beijing 100871, China.

* Present address: Illumina, Inc., San Diego, CA 92121, USA.

{dagger} To whom correspondence should be addressed. E-mail: lim{at}cmp.ucsf.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
SH3 interactome conserves general function over specific form.
X. Xin, D. Gfeller, J. Cheng, R. Tonikian, L. Sun, A. Guo, L. Lopez, A. Pavlenco, A. Akintobi, Y. Zhang, et al. (2014)
Mol Syst Biol 9, 652
   Abstract »    Full Text »    PDF »
Improved Production of L-Threonine in Escherichia coli by Use of a DNA Scaffold System.
J. H. Lee, S.-C. Jung, L. M. Bui, K. H. Kang, J.-J. Song, and S. C. Kim (2013)
Appl. Envir. Microbiol. 79, 774-782
   Abstract »    Full Text »    PDF »
Lengthening of 3'UTR increases with morphological complexity in animal evolution.
C.-Y. Chen, S.-T. Chen, H.-F. Juan, and H.-C. Huang (2012)
Bioinformatics 28, 3178-3181
   Abstract »    Full Text »    PDF »
Engineering robust control of two-component system phosphotransfer using modular scaffolds.
W. R. Whitaker, S. A. Davis, A. P. Arkin, and J. E. Dueber (2012)
PNAS 109, 18090-18095
   Abstract »    Full Text »    PDF »
Design principles underpinning the regulatory diversity of protein kinases.
K. Oruganty and N. Kannan (2012)
Phil Trans R Soc B 367, 2529-2539
   Abstract »    Full Text »    PDF »
Understanding Signaling Dynamics Through Synthesis.
A. L. Slusarczyk and R. Weiss (2012)
Science Signaling 5, pe16
   Abstract »    Full Text »    PDF »
Control of protein signaling using a computationally designed GTPase/GEF orthogonal pair.
G. T. Kapp, S. Liu, A. Stein, D. T. Wong, A. Remenyi, B. J. Yeh, J. S. Fraser, J. Taunton, W. A. Lim, and T. Kortemme (2012)
PNAS 109, 5277-5282
   Abstract »    Full Text »    PDF »
Evolution at the Subgene Level: Domain Rearrangements in the Drosophila Phylogeny.
Y.-C. Wu, M. D. Rasmussen, and M. Kellis (2012)
Mol. Biol. Evol. 29, 689-705
   Abstract »    Full Text »    PDF »
Chimeric Genes as a Source of Rapid Evolution in Drosophila melanogaster.
R. L. Rogers and D. L. Hartl (2012)
Mol. Biol. Evol. 29, 517-529
   Abstract »    Full Text »    PDF »
Dynamics and Adaptive Benefits of Protein Domain Emergence and Arrangements during Plant Genome Evolution.
A. R. Kersting, E. Bornberg-Bauer, A. D. Moore, and S. Grath (2012)
Genome Biol Evol 4, 316-329
   Abstract »    Full Text »    PDF »
Yeast pheromone receptor genes STE2 and STE3 are differently regulated at the transcription and polyadenylation level.
G. Di Segni, S. Gastaldi, M. Zamboni, and G. P. Tocchini-Valentini (2011)
PNAS 108, 17082-17086
   Abstract »    Full Text »    PDF »
Synthetic Biology: Integrated Gene Circuits.
N. Nandagopal and M. B. Elowitz (2011)
Science 333, 1244-1248
   Abstract »    Full Text »    PDF »
A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice.
H. Ye, M. D.-E. Baba, R.-W. Peng, and M. Fussenegger (2011)
Science 332, 1565-1568
   Abstract »    Full Text »    PDF »
Recruitment interactions can override catalytic interactions in determining the functional identity of a protein kinase.
A. P. Won, J. E. Garbarino, and W. A. Lim (2011)
PNAS 108, 9809-9814
   Abstract »    Full Text »    PDF »
Evolutionary Reshaping of Fungal Mating Pathway Scaffold Proteins.
P. Cote, T. Sulea, D. Dignard, C. Wu, and M. Whiteway (2011)
mBio 2, e00230-10
   Abstract »    Full Text »    PDF »
Signals: Tinkering with Domains.
E. Bornberg-Bauer (2010)
Science Signaling 3, pe31
   Abstract »    Full Text »    PDF »
Domain Recombination: A Workhorse for Evolutionary Innovation.
G. Apic and R. B. Russell (2010)
Science Signaling 3, pe30
   Abstract »    Full Text »    PDF »
The Promise of Evolutionary Systems Biology: Lessons from Bacterial Chemotaxis.
O. S. Soyer (2010)
Science Signaling 3, pe23
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882