Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 329 (5995): 1085-1088

Copyright © 2010 by the American Association for the Advancement of Science

Phosphatidic Acid Is a pH Biosensor That Links Membrane Biogenesis to Metabolism

Barry P. Young,1,* John J. H. Shin,1,* Rick Orij,2 Jesse T. Chao,1 Shu Chen Li,1 Xue Li Guan,3,4 Anthony Khong,5 Eric Jan,5 Markus R. Wenk,4,6,7 William A. Prinz,8 Gertien J. Smits,2 Christopher J. R. Loewen1,9,{dagger}

Abstract: Recognition of lipids by proteins is important for their targeting and activation in many signaling pathways, but the mechanisms that regulate such interactions are largely unknown. Here, we found that binding of proteins to the ubiquitous signaling lipid phosphatidic acid (PA) depended on intracellular pH and the protonation state of its phosphate headgroup. In yeast, a rapid decrease in intracellular pH in response to glucose starvation regulated binding of PA to a transcription factor, Opi1, that coordinately repressed phospholipid metabolic genes. This enabled coupling of membrane biogenesis to nutrient availability.

1 Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
2 Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, 1018 WV, Netherlands.
3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077.
4 Department of Biochemistry, University of Geneva, Sciences II, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland.
5 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
6 Department of Biological Sciences National University of Singapore, Singapore 119077.
7 Swiss Tropical and Public Health Institute, University of Basel, Socinstrasse 57, P.O. Box 4002, Basel, Switzerland.
8 Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
9 The Brain Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: christopher.loewen{at}ubc.ca


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The signaling lipid PI(3,5)P2 stabilizes V1-Vo sector interactions and activates the V-ATPase.
S. C. Li, T. T. Diakov, T. Xu, M. Tarsio, W. Zhu, S. Couoh-Cardel, L. S. Weisman, and P. M. Kane (2014)
Mol. Biol. Cell 25, 1251-1262
   Abstract »    Full Text »    PDF »
Control of lipid droplet size in budding yeast requires the collaboration between Fld1 and Ldb16.
C.-W. Wang, Y.-H. Miao, and Y.-S. Chang (2014)
J. Cell Sci. 127, 1214-1228
   Abstract »    Full Text »    PDF »
Phosphatidic Acid Interacts with a MYB Transcription Factor and Regulates Its Nuclear Localization and Function in Arabidopsis.
H. Yao, G. Wang, L. Guo, and X. Wang (2013)
PLANT CELL 25, 5030-5042
   Abstract »    Full Text »    PDF »
In Scarcity and Abundance: Metabolic Signals Regulating Cell Growth.
S. Saad, M. Peter, and R. Dechant (2013)
Physiology 28, 298-309
   Abstract »    Full Text »    PDF »
Regulation of Inositol Metabolism Is Fine-tuned by Inositol Pyrophosphates in Saccharomyces cerevisiae.
C. Ye, W. M. M. S. Bandara, and M. L. Greenberg (2013)
J. Biol. Chem. 288, 24898-24908
   Abstract »    Full Text »    PDF »
Formation and dissociation of proteasome storage granules are regulated by cytosolic pH.
L. Z. Peters, R. Hazan, M. Breker, M. Schuldiner, and S. Ben-Aroya (2013)
J. Cell Biol. 201, 663-671
   Abstract »    Full Text »    PDF »
Intracellular pH homeostasis in Candida glabrata in infection-associated conditions.
A. Ullah, M. I. Lopes, S. Brul, and G. J. Smits (2013)
Microbiology 159, 803-813
   Abstract »    Full Text »    PDF »
Alteration of Plasma Membrane Organization by an Anticancer Lysophosphatidylcholine Analogue Induces Intracellular Acidification and Internalization of Plasma Membrane Transporters in Yeast.
O. Czyz, T. Bitew, A. Cuesta-Marban, C. R. McMaster, F. Mollinedo, and V. Zaremberg (2013)
J. Biol. Chem. 288, 8419-8432
   Abstract »    Full Text »    PDF »
Regulation of Cation Balance in Saccharomyces cerevisiae.
M. S. Cyert and C. C. Philpott (2013)
Genetics 193, 677-713
   Abstract »    Full Text »    PDF »
Role of Phospholipids in Endocytosis, Phagocytosis, and Macropinocytosis.
M. Bohdanowicz and S. Grinstein (2013)
Physiol Rev 93, 69-106
   Abstract »    Full Text »    PDF »
Quantitative Analysis of the Modes of Growth Inhibition by Weak Organic Acids in Saccharomyces cerevisiae.
A. Ullah, R. Orij, S. Brul, and G. J. Smits (2012)
Appl. Envir. Microbiol. 78, 8377-8387
   Abstract »    Full Text »    PDF »
Functional Cftr in crypt epithelium of organotypic enteroid cultures from murine small intestine.
J. Liu, N. M. Walker, M. T. Cook, A. Ootani, and L. L. Clarke (2012)
Am J Physiol Cell Physiol 302, C1492-C1503
   Abstract »    Full Text »    PDF »
BTN1, the Saccharomyces cerevisiae homolog to the human Batten disease gene, is involved in phospholipid distribution.
S. Padilla-Lopez, D. Langager, C.-H. Chan, and D. A. Pearce (2012)
Dis. Model. Mech. 5, 191-199
   Abstract »    Full Text »    PDF »
Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces cerevisiae.
S. A. Henry, S. D. Kohlwein, and G. M. Carman (2012)
Genetics 190, 317-349
   Abstract »    Full Text »    PDF »
Functional Characterization of the Interaction between Bacterial Adhesin Multivalent Adhesion Molecule 7 (MAM7) Protein and Its Host Cell Ligands.
A. M. Krachler and K. Orth (2011)
J. Biol. Chem. 286, 38939-38947
   Abstract »    Full Text »    PDF »
White Lupin Cluster Root Acclimation to Phosphorus Deficiency and Root Hair Development Involve Unique Glycerophosphodiester Phosphodiesterases.
L. Cheng, B. Bucciarelli, J. Liu, K. Zinn, S. Miller, J. Patton-Vogt, D. Allan, J. Shen, and C. P. Vance (2011)
Plant Physiology 156, 1131-1148
   Abstract »    Full Text »    PDF »
Yet1p-Yet3p interacts with Scs2p-Opi1p to regulate ER localization of the Opi1p repressor.
J. D. Wilson, S. L. Thompson, and C. Barlowe (2011)
Mol. Biol. Cell 22, 1430-1439
   Abstract »    Full Text »    PDF »
Molecular, cellular, and physiological responses to phosphatidic acid formation in plants.
C. Testerink and T. Munnik (2011)
J. Exp. Bot. 62, 2349-2361
   Abstract »    Full Text »    PDF »
Lipid Signaling and Homeostasis: PA- Is Better than PA-H, But What About Those PIPs?.
N. T. Ktistakis (2010)
Science Signaling 3, pe46
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882