Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 329 (5996): 1201-1205

Copyright © 2010 by the American Association for the Advancement of Science

Signaling Kinase AMPK Activates Stress-Promoted Transcription via Histone H2B Phosphorylation

David Bungard,1 Benjamin J. Fuerth,2,3 Ping-Yao Zeng,1,4 Brandon Faubert,2,3 Nancy L. Maas,1 Benoit Viollet,5,6 David Carling,7 Craig B. Thompson,8 Russell G. Jones,2,3,8,* Shelley L. Berger1,9,10,*

Abstract: The mammalian adenosine monophosphate–activated protein kinase (AMPK) is a serine-threonine kinase protein complex that is a central regulator of cellular energy homeostasis. However, the mechanisms by which AMPK mediates cellular responses to metabolic stress remain unclear. We found that AMPK activates transcription through direct association with chromatin and phosphorylation of histone H2B at serine 36. AMPK recruitment and H2B Ser36 phosphorylation colocalized within genes activated by AMPK-dependent pathways, both in promoters and in transcribed regions. Ectopic expression of H2B in which Ser36 was substituted by alanine reduced transcription and RNA polymerase II association to AMPK-dependent genes, and lowered cell survival in response to stress. Our results place AMPK-dependent H2B Ser36 phosphorylation in a direct transcriptional and chromatin regulatory pathway leading to cellular adaptation to stress.

1 Department of Cellular and Developmental Biology, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA.
2 Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada.
3 Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada.
4 Institutes of Biomedical Sciences Epigenetics Program, Mingdao Building, Room 511, Fudan University, Mail Box 281, 138 Yixue Yuan Road, Shanghai 200032, P.R. China.
5 Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), 75014 Paris, France.
6 INSERM U1016, 75014 Paris, France.
7 Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London W12 0NN, UK.
8 Abramson Cancer Center and Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
9 Department of Genetics, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA.
10 Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.

* To whom correspondence should be addressed. E-mail: russell.jones{at}mcgill.ca (R.G.J.); bergers{at}mail.med.upenn.edu (S.L.B.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
AMPK regulates histone H2B O-GlcNAcylation.
Q. Xu, C. Yang, Y. Du, Y. Chen, H. Liu, M. Deng, H. Zhang, L. Zhang, T. Liu, Q. Liu, et al. (2014)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
AMP-activated Protein Kinase {alpha}2 Protects against Liver Injury from Metastasized Tumors via Reduced Glucose Deprivation-induced Oxidative Stress.
S.-L. Qiu, Z.-C. Xiao, C.-M. Piao, Y.-L. Xian, L.-X. Jia, Y.-F. Qi, J.-H. Han, Y.-y. Zhang, and J. Du (2014)
J. Biol. Chem. 289, 9449-9459
   Abstract »    Full Text »    PDF »
Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK.
X. Liu, R. R. Chhipa, S. Pooya, M. Wortman, S. Yachyshin, L. M. L. Chow, A. Kumar, X. Zhou, Y. Sun, B. Quinn, et al. (2014)
PNAS 111, E435-E444
   Abstract »    Full Text »    PDF »
5'-AMP-Activated Protein Kinase-Activating Transcription Factor 1 Cascade Modulates Human Monocyte-Derived Macrophages to Atheroprotective Functions in Response to Heme or Metformin.
X. Wan, Y. Huo, M. Johns, E. Piper, J. C. Mason, D. Carling, D. O. Haskard, and J. J. Boyle (2013)
Arterioscler Thromb Vasc Biol 33, 2470-2480
   Abstract »    Full Text »    PDF »
Conserved versatile master regulators in signalling pathways in response to stress in plants.
V. E. Balderas-Hernandez, M. Alvarado-Rodriguez, and S. Fraire-Velazquez (2013)
AoB Plants 5, plt033
   Abstract »    Full Text »    PDF »
Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy.
S. Awad, M. Kunhi, G. H. Little, Y. Bai, W. An, D. Bers, L. Kedes, and C. Poizat (2013)
Nucleic Acids Res. 41, 7656-7672
   Abstract »    Full Text »    PDF »
The Phosphatidylinositol 3,5-Bisphosphate (PI(3,5)P2)-dependent Tup1 Conversion (PIPTC) Regulates Metabolic Reprogramming from Glycolysis to Gluconeogenesis.
B.-K. Han and S. D. Emr (2013)
J. Biol. Chem. 288, 20633-20645
   Abstract »    Full Text »    PDF »
Mitochondria as a Target of Environmental Toxicants.
J. N. Meyer, M. C. K. Leung, J. P. Rooney, A. Sendoel, M. O. Hengartner, G. E. Kisby, and A. S. Bess (2013)
Toxicol. Sci. 134, 1-17
   Abstract »    Full Text »    PDF »
AMPK: A Contextual Oncogene or Tumor Suppressor?.
J. Liang and G. B. Mills (2013)
Cancer Res. 73, 2929-2935
   Abstract »    Full Text »    PDF »
The Tumor Suppressor Kinase LKB1 Activates the Downstream Kinases SIK2 and SIK3 to Stimulate Nuclear Export of Class IIa Histone Deacetylases.
D. R. Walkinshaw, R. Weist, G.-W. Kim, L. You, L. Xiao, J. Nie, C. S. Li, S. Zhao, M. Xu, and X.-J. Yang (2013)
J. Biol. Chem. 288, 9345-9362
   Abstract »    Full Text »    PDF »
How Do Sugars Regulate Plant Growth and Development? New Insight into the Role of Trehalose-6-Phosphate.
L. E. O'Hara, M. J. Paul, and A. Wingler (2013)
Mol Plant 6, 261-274
   Abstract »    Full Text »    PDF »
AMP-Activated Protein Kinase Regulation and Biological Actions in the Heart.
V. G. Zaha and L. H. Young (2012)
Circ. Res. 111, 800-814
   Abstract »    Full Text »    PDF »
The AMP-activated Protein Kinase Snf1 Regulates Transcription Factor Binding, RNA Polymerase II Activity, and mRNA Stability of Glucose-repressed Genes in Saccharomyces cerevisiae.
E. T. Young, C. Zhang, K. M. Shokat, P. K. Parua, and K. A. Braun (2012)
J. Biol. Chem. 287, 29021-29034
   Abstract »    Full Text »    PDF »
Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development.
Y.-H. Cho, J.-W. Hong, E.-C. Kim, and S.-D. Yoo (2012)
Plant Physiology 158, 1955-1964
   Abstract »    Full Text »    PDF »
AMPK directly inhibits NDPK through a phosphoserine switch to maintain cellular homeostasis.
R. U. Onyenwoke, L. J. Forsberg, L. Liu, T. Williams, O. Alzate, and J. E. Brenman (2012)
Mol. Biol. Cell 23, 381-389
   Abstract »    Full Text »    PDF »
A Peek into the Complex Realm of Histone Phosphorylation.
T. Banerjee and D. Chakravarti (2011)
Mol. Cell. Biol. 31, 4858-4873
   Abstract »    Full Text »    PDF »
The nuclear receptor PPAR{beta}/{delta} programs muscle glucose metabolism in cooperation with AMPK and MEF2.
Z. Gan, E. M. Burkart-Hartman, D.-H. Han, B. Finck, T. C. Leone, E. Y. Smith, J. E. Ayala, J. Holloszy, and D. P. Kelly (2011)
Genes & Dev. 25, 2619-2630
   Abstract »    Full Text »    PDF »
AMP-Activated Protein Kinase Suppresses Endothelial Cell Inflammation Through Phosphorylation of Transcriptional Coactivator p300.
Y. Zhang, J. Qiu, X. Wang, Y. Zhang, and M. Xia (2011)
Arterioscler Thromb Vasc Biol 31, 2897-2908
   Abstract »    Full Text »    PDF »
AMPK{alpha}2 Deletion Exacerbates Neointima Formation by Upregulating Skp2 in Vascular Smooth Muscle Cells.
P. Song, S. Wang, C. He, S. Wang, B. Liang, B. Viollet, and M.-H. Zou (2011)
Circ. Res. 109, 1230-1239
   Abstract »    Full Text »    PDF »
AMP-Activated Protein Kinase Regulates E3 Ligases in Rodent Heart.
K. K. Baskin and H. Taegtmeyer (2011)
Circ. Res. 109, 1153-1161
   Abstract »    Full Text »    PDF »
The Liver Kinase B1 Is a Central Regulator of T Cell Development, Activation, and Metabolism.
N. J. MacIver, J. Blagih, D. C. Saucillo, L. Tonelli, T. Griss, J. C. Rathmell, and R. G. Jones (2011)
J. Immunol. 187, 4187-4198
   Abstract »    Full Text »    PDF »
Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress.
K. Zaugg, Y. Yao, P. T. Reilly, K. Kannan, R. Kiarash, J. Mason, P. Huang, S. K. Sawyer, B. Fuerth, B. Faubert, et al. (2011)
Genes & Dev. 25, 1041-1051
   Abstract »    Full Text »    PDF »
AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure.
C. Beauloye, L. Bertrand, S. Horman, and L. Hue (2011)
Cardiovasc Res 90, 224-233
   Abstract »    Full Text »    PDF »
Summary: The Nucleus--A Close-Knit Community of Dynamic Structures.
S. Henikoff (2011)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Cell Signaling and Transcriptional Regulation via Histone Phosphorylation.
S. L. Berger (2011)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Direct Recruitment of ERK Cascade Components to Inducible Genes Is Regulated by Heterogeneous Nuclear Ribonucleoprotein (hnRNP) K.
M. Mikula and K. Bomsztyk (2011)
J. Biol. Chem. 286, 9763-9775
   Abstract »    Full Text »    PDF »
Cancer Cell Metabolism.
R. A. Cairns, I. Harris, S. McCracken, and T. W. Mak (2011)
Cold Spring Harb Symp Quant Biol 76, 299-311
   Abstract »    Full Text »    PDF »
Direct Recruitment of Insulin Receptor and ERK Signaling Cascade to Insulin-Inducible Gene Loci.
J. D. Nelson, R. C. LeBoeuf, and K. Bomsztyk (2011)
Diabetes 60, 127-137
   Abstract »    Full Text »    PDF »
Targeting the Core of Transcription.
D. G. Hardie (2010)
Science 329, 1158-1159
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882