Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 330 (6000): 86-88

Copyright © 2010 by the American Association for the Advancement of Science

Sequencing of Culex quinquefasciatus Establishes a Platform for Mosquito Comparative Genomics

Peter Arensburger,1,* Karine Megy,2 Robert M. Waterhouse,3,4 Jenica Abrudan,5 Paolo Amedeo,6 Beatriz Antelo,7 Lyric Bartholomay,8 Shelby Bidwell,9 Elisabet Caler,6 Francisco Camara,9 Corey L. Campbell,10 Kathryn S. Campbell,11 Claudio Casola,12 Marta T. Castro,13 Ishwar Chandramouliswaran,6 Sinéad B. Chapman,14 Scott Christley,5 Javier Costas,15 Eric Eisenstadt,6 Cedric Feschotte,16 Claire Fraser-Liggett,17 Roderic Guigo,9 Brian Haas,14 Martin Hammond,2 Bill S. Hansson,18 Janet Hemingway,19 Sharon R. Hill,20 Clint Howarth,14 Rickard Ignell,20 Ryan C. Kennedy,5 Chinnappa D. Kodira,21 Neil F. Lobo,5 Chunhong Mao,22 George Mayhew,23 Kristin Michel,24 Akio Mori,5 Nannan Liu,25 Horacio Naveira,26 Vishvanath Nene,17,27 Nam Nguyen,16 Matthew D. Pearson,14 Ellen J. Pritham,16 Daniela Puiu,28 Yumin Qi,22 Hilary Ranson,19 Jose M. C. Ribeiro,29 Hugh M. Roberston,30 David W. Severson,5 Martin Shumway,29 Mario Stanke,31 Robert L. Strausberg,6 Cheng Sun,16 Granger Sutton,6 Zhijian (Jake) Tu,22 Jose Manuel C. Tubio,7 Maria F. Unger,5 Dana L. Vanlandingham,33 Albert J. Vilella,2 Owen White,17 Jared R. White,14 Charles S. Wondji,19 Jennifer Wortman,17 Evgeny M. Zdobnov,3,4,33 Bruce Birren,14 Bruce M. Christensen,23 Frank H. Collins,5 Anthony Cornel,32 George Dimopoulos,35 Linda I. Hannick,6 Stephen Higgs,33 Gregory C. Lanzaro,34 Daniel Lawson,2 Norman H. Lee,36 Marc A. T. Muskavitch,14,37,38 Alexander S. Raikhel,1 Peter W. Atkinson1

Abstract: Culex quinquefasciatus (the southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus, as well as of nematodes that cause lymphatic filariasis. C. quinquefasciatus is one species within the Culex pipiens species complex and can be found throughout tropical and temperate climates of the world. The ability of C. quinquefasciatus to take blood meals from birds, livestock, and humans contributes to its ability to vector pathogens between species. Here, we describe the genomic sequence of C. quinquefasciatus: Its repertoire of 18,883 protein-coding genes is 22% larger than that of Aedes aegypti and 52% larger than that of Anopheles gambiae with multiple gene-family expansions, including olfactory and gustatory receptors, salivary gland genes, and genes associated with xenobiotic detoxification.

1 Center for Disease Vector Research, University of California Riverside, Riverside, CA 92521, USA.
2 European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
3 University of Geneva Medical School, 1 rue Michel-Servet, 1211 Geneva, Switzerland.
4 Swiss Institute of Bioinformatics, 1 rue Michel-Servet, 1211 Geneva, Switzerland.
5 University of Notre Dame, Notre Dame, IN 46556, USA.
6 J. Craig Venter Institute, Rockville, MD 20850, USA.
7 Complexo Hospitalario Universitario de Santiago, Santiago de Compostela 15706, Spain.
8 Iowa State University, Ames, IA 50011, USA.
9 Center for Genomic Regulation, Universitat Pompeu Fabra, E-08003 Barcelona, Catalonia, Spain.
10 Colorado State University, Fort Collins, CO 80523, USA.
11 Harvard University, Cambridge, MA 02138, USA.
12 Indiana University, Bloomington, IN 47405–3700, USA.
13 Programa d’Epigenética i Biologia del Cáncer, Hospital Duran i Reynals, 08907 Hospitalet de Llobregat, Barcelona, Spain.
14 The Broad Institute, Cambridge, MA 02142, USA.
15 Fundación Pública Galega de Medicina Xenómica–Servizo Galego de Saúde, Santiago de Compostela 15706, Spain.
16 University of Texas Arlington, Arlington, TX 76019, USA.
17 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
18 Max Planck Institute for Chemical Ecology, 07749 Jena, Germany.
19 Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
20 Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
21 454 Life Sciences, the Roche Group, Branford, CT 06405, USA.
22 Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
23 University of Wisconsin, Madison, WI 53706, USA.
24 Kansas State University, Manhattan, KS 66506, USA.
25 Auburn University, Auburn, AL 36849, USA.
26 Departamento de Biloxía Celular e Molecular, Universidade da Coruña, 15071 A, Coruña, Spain.
27 International Livestock Research Institute, Nairobi, Kenya.
28 Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
29 National Institutes of Health, Bethesda, MD 20892, USA.
30 University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
31 University of Göttingen, 37077 Göttingen, Germany.
32 University of Texas Medical Branch, Galveston, TX 77555, USA.
33 Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
34 University of California Davis, Parlier, CA 93648, USA.
35 Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
36 George Washington University Medical Center, Washington, DC 20037, USA.
37 Boston College, Chestnut Hill, MA 02467, USA.
38 Harvard School of Public Health, Boston, MA 02115, USA.

* To whom correspondence should be addressed. E-mail: arensburger{at}gmail.com


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Antibodies to a Single, Conserved Epitope in Anopheles APN1 Inhibit Universal Transmission of Plasmodium falciparum and Plasmodium vivax Malaria.
J. S. Armistead, I. Morlais, D. K. Mathias, J. G. Jardim, J. Joy, A. Fridman, A. C. Finnefrock, A. Bagchi, M. Plebanski, D. G. Scorpio, et al. (2014)
Infect. Immun. 82, 818-829
   Abstract »    Full Text »    PDF »
Genome-block expression-assisted association studies discover malaria resistance genes in Anopheles gambiae.
J. Li, X. Wang, G. Zhang, J. I. Githure, G. Yan, and A. A. James (2013)
PNAS 110, 20675-20680
   Abstract »    Full Text »    PDF »
Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms.
W. S. Leal, Y.-M. Choo, P. Xu, C. S. B. da Silva, and C. Ueira-Vieira (2013)
PNAS 110, 18704-18709
   Abstract »    Full Text »    PDF »
Composite Linkage Map and Enhanced Genome Map for Culex pipiens Complex Mosquitoes.
P. V. Hickner, A. Mori, D. D. Chadee, and D. W. Severson (2013)
J. Hered. 104, 649-655
   Abstract »    Full Text »    PDF »
The Genome of Anopheles darlingi, the main neotropical malaria vector.
O. Marinotti, G. C. Cerqueira, L. G. P. de Almeida, M. I. T. Ferro, E. L. d. S. Loreto, A. Zaha, S. M. R. Teixeira, A. R. Wespiser, A. Almeida e Silva, A. D. Schlindwein, et al. (2013)
Nucleic Acids Res. 41, 7387-7400
   Abstract »    Full Text »    PDF »
Profile of Janet Hemingway.
A. Griswold (2013)
PNAS 110, 5276-5278
   Full Text »    PDF »
Genome-Level Analysis of Selective Constraint without Apparent Sequence Conservation.
O. A. Vakhrusheva, G. A. Bazykin, and A. S. Kondrashov (2013)
Genome Biol Evol 5, 532-541
   Abstract »    Full Text »    PDF »
Comparative Genomics of Odorant Binding Proteins in Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus.
M. Manoharan, M. Ng Fuk Chong, A. Vaitinadapoule, E. Frumence, R. Sowdhamini, and B. Offmann (2013)
Genome Biol Evol 5, 163-180
   Abstract »    Full Text »    PDF »
Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth.
J.-P. David, H. M. Ismail, A. Chandor-Proust, and M. J. I. Paine (2013)
Phil Trans R Soc B 368, 20120429
   Abstract »    Full Text »    PDF »
Functional characterization of piggyBat from the bat Myotis lucifugus unveils an active mammalian DNA transposon.
R. Mitra, X. Li, A. Kapusta, D. Mayhew, R. D. Mitra, C. Feschotte, and N. L. Craig (2013)
PNAS 110, 234-239
   Abstract »    Full Text »    PDF »
Genomic, RNAseq, and Molecular Modeling Evidence Suggests That the Major Allergen Domain in Insects Evolved from a Homodimeric Origin.
T. A. Randall, L. Perera, R. E. London, and G. A. Mueller (2013)
Genome Biol Evol 5, 2344-2358
   Abstract »    Full Text »    PDF »
OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs.
R. M. Waterhouse, F. Tegenfeldt, J. Li, E. M. Zdobnov, and E. V. Kriventseva (2013)
Nucleic Acids Res. 41, D358-D365
   Abstract »    Full Text »    PDF »
Evolution of a Large, Conserved, and Syntenic Gene Family in Insects.
N. Shah, D. R. Dorer, E. N. Moriyama, and A. C. Christensen (2012)
g3 2, 313-319
   Abstract »    Full Text »    PDF »
VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics.
K. Megy, S. J. Emrich, D. Lawson, D. Campbell, E. Dialynas, D. S. T. Hughes, G. Koscielny, C. Louis, R. M. MacCallum, S. N. Redmond, et al. (2012)
Nucleic Acids Res. 40, D729-D734
   Abstract »    Full Text »    PDF »
Fossil Rhabdoviral Sequences Integrated into Arthropod Genomes: Ontogeny, Evolution, and Potential Functionality.
P. Fort, A. Albertini, A. Van-Hua, A. Berthomieu, S. Roche, F. Delsuc, N. Pasteur, P. Capy, Y. Gaudin, and M. Weill (2012)
Mol. Biol. Evol. 29, 381-390
   Abstract »    Full Text »    PDF »
Reexamination of Culex pipiens Hybridization Zone in the Eastern United States by Ribosomal DNA-Based Single Nucleotide Polymorphism Markers.
S. Huang, G. Molaei, and T. G. Andreadis (2011)
Am J Trop Med Hyg 85, 434-441
   Abstract »    Full Text »    PDF »
Profile of Alexander S. Raikhel.
T. H. Davis (2010)
PNAS 107, 22381-22383
   Full Text »    PDF »
Pathogenomics of Culex quinquefasciatus and Meta-Analysis of Infection Responses to Diverse Pathogens.
L. C. Bartholomay, R. M. Waterhouse, G. F. Mayhew, C. L. Campbell, K. Michel, Z. Zou, J. L. Ramirez, S. Das, K. Alvarez, P. Arensburger, et al. (2010)
Science 330, 88-90
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882