Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 330 (6001): 228-231

Copyright © 2010 by the American Association for the Advancement of Science

Frequent Mutations of Chromatin Remodeling Gene ARID1A in Ovarian Clear Cell Carcinoma

Siân Jones,1 Tian-Li Wang,2 Ie-Ming Shih,3 Tsui-Lien Mao,4 Kentaro Nakayama,5 Richard Roden,3 Ruth Glas,6 Dennis Slamon,6 Luis A. Diaz, Jr.,1 Bert Vogelstein,1 Kenneth W. Kinzler,1,* Victor E. Velculescu,1,* Nickolas Papadopoulos1,*

Abstract: Ovarian clear cell carcinoma (OCCC) is an aggressive human cancer that is generally resistant to therapy. To explore the genetic origin of OCCC, we determined the exomic sequences of eight tumors after immunoaffinity purification of cancer cells. Through comparative analyses of normal cells from the same patients, we identified four genes that were mutated in at least two tumors. PIK3CA, which encodes a subunit of phosphatidylinositol-3 kinase, and KRAS, which encodes a well-known oncoprotein, had previously been implicated in OCCC. The other two mutated genes were previously unknown to be involved in OCCC: PPP2R1A encodes a regulatory subunit of serine/threonine phosphatase 2, and ARID1A encodes adenine-thymine (AT)–rich interactive domain–containing protein 1A, which participates in chromatin remodeling. The nature and pattern of the mutations suggest that PPP2R1A functions as an oncogene and ARID1A as a tumor-suppressor gene. In a total of 42 OCCCs, 7% had mutations in PPP2R1A and 57% had mutations in ARID1A. These results suggest that aberrant chromatin remodeling contributes to the pathogenesis of OCCC.

1 Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.
2 Department of Gynecology and Obstetrics and Oncology, Johns Hopkins Medical Institutes, Baltimore, MD 21231, USA.
3 Department of Pathology, Oncology, Gynecology, and Obstetrics, Johns Hopkins Medical Institutes, Baltimore, MD 21231, USA.
4 Department of Pathology, National Taiwan University College of Medicine, Taipei 100, Taiwan.
5 Department of Gynecology and Obstetrics, Shimane University School of Medicine, Izumo, Shimane 6938501, Japan.
6 Division of Hematology/Oncology, David Geffen School of Medicine at the University of California, Los Angeles, CA 99095, USA.

* To whom correspondence should be addressed. E-mail: npapado1{at} (N.P.); kinzlke{at} (K.W.K.); velculescu{at} (V.E.V.)

Reduced expression of the chromatin remodeling gene ARID1A enhances gastric cancer cell migration and invasion via downregulation of E-cadherin transcription.
H.-B. Yan, X.-F. Wang, Q. Zhang, Z.-Q. Tang, Y.-H. Jiang, H.-Z. Fan, Y.-h. Sun, P.-Y. Yang, and F. Liu (2014)
Carcinogenesis 35, 867-876
   Abstract »    Full Text »    PDF »
Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance.
M. Buscarlet, V. Krasteva, L. Ho, C. Simon, J. Hebert, B. Wilhelm, G. R. Crabtree, G. Sauvageau, P. Thibault, and J. A. Lessard (2014)
Blood 123, 1720-1728
   Abstract »    Full Text »    PDF »
Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma.
H. Li, M. S. Kaminski, Y. Li, M. Yildiz, P. Ouillette, S. Jones, H. Fox, K. Jacobi, K. Saiya-Cork, D. Bixby, et al. (2014)
Blood 123, 1487-1498
   Abstract »    Full Text »    PDF »
Chromatin-regulating proteins as targets for cancer therapy.
T. Oike, H. Ogiwara, N. Amornwichet, T. Nakano, and T. Kohno (2014)
J Radiat Res
   Abstract »    Full Text »    PDF »
Synthetic genetic array screen identifies PP2A as a therapeutic target in Mad2-overexpressing tumors.
Y. Bian, R. Kitagawa, P. K. Bansal, Y. Fujii, A. Stepanov, and K. Kitagawa (2014)
PNAS 111, 1628-1633
   Abstract »    Full Text »    PDF »
Molecular Pathways: SWI/SNF (BAF) Complexes Are Frequently Mutated in Cancer--Mechanisms and Potential Therapeutic Insights.
X. Wang, J. R. Haswell, and C. W. M. Roberts (2014)
Clin. Cancer Res. 20, 21-27
   Abstract »    Full Text »    PDF »
Ovarian cancer: genomic analysis.
W. Wei, D. Dizon, V. Vathipadiekal, and M. J. Birrer (2013)
Ann. Onc. 24, x7-x15
   Abstract »    Full Text »    PDF »
Biomarker-Based Ovarian Carcinoma Typing: A Histologic Investigation in the Ovarian Tumor Tissue Analysis Consortium.
M. Kobel, S. E. Kalloger, S. Lee, M. A. Duggan, L. E. Kelemen, L. Prentice, K. R. Kalli, B. L. Fridley, D. W. Visscher, G. L. Keeney, et al. (2013)
Cancer Epidemiol. Biomarkers Prev. 22, 1677-1686
   Abstract »    Full Text »    PDF »
Inactivating Mutations in SWI/SNF Chromatin Remodeling Genes in Human Cancer.
T. Oike, H. Ogiwara, T. Nakano, J. Yokota, and T. Kohno (2013)
Jpn. J. Clin. Oncol. 43, 849-855
   Abstract »    Full Text »    PDF »
The Exomes of the NCI-60 Panel: A Genomic Resource for Cancer Biology and Systems Pharmacology.
O. D. Abaan, E. C. Polley, S. R. Davis, Y. J. Zhu, S. Bilke, R. L. Walker, M. Pineda, Y. Gindin, Y. Jiang, W. C. Reinhold, et al. (2013)
Cancer Res. 73, 4372-4382
   Abstract »    Full Text »    PDF »
Frequent Mutation of the PI3K Pathway in Head and Neck Cancer Defines Predictive Biomarkers.
V. W. Y. Lui, M. L. Hedberg, H. Li, B. S. Vangara, K. Pendleton, Y. Zeng, Y. Lu, Q. Zhang, Y. Du, B. R. Gilbert, et al. (2013)
Cancer Discovery 3, 761-769
   Abstract »    Full Text »    PDF »
Genomic Medicine Frontier in Human Solid Tumors: Prospects and Challenges.
R. Dienstmann, J. Rodon, J. Barretina, and J. Tabernero (2013)
J. Clin. Oncol. 31, 1874-1884
   Abstract »    Full Text »    PDF »
Genomics-Driven Oncology: Framework for an Emerging Paradigm.
L. A. Garraway (2013)
J. Clin. Oncol. 31, 1806-1814
   Abstract »    Full Text »    PDF »
Reproductive characteristics in relation to ovarian cancer risk by histologic pathways.
M. A. Merritt, M. De Pari, A. F. Vitonis, L. J. Titus, D. W. Cramer, and K. L. Terry (2013)
Hum. Reprod. 28, 1406-1417
   Abstract »    Full Text »    PDF »
Cancer Genome Landscapes.
B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. A. Diaz Jr., and K. W. Kinzler (2013)
Science 339, 1546-1558
   Abstract »    Full Text »    PDF »
Epigenetic Reprogramming in Cancer.
M. L. Suva, N. Riggi, and B. E. Bernstein (2013)
Science 339, 1567-1570
   Abstract »    Full Text »    PDF »
ARID1a-DNA Interactions Are Required for Promoter Occupancy by SWI/SNF.
R. L. Chandler, J. Brennan, J. C. Schisler, D. Serber, C. Patterson, and T. Magnuson (2013)
Mol. Cell. Biol. 33, 265-280
   Abstract »    Full Text »    PDF »
Evaluation of DNA from the Papanicolaou Test to Detect Ovarian and Endometrial Cancers.
I. Kinde, C. Bettegowda, Y. Wang, J. Wu, N. Agrawal, I.-M. Shih, R. Kurman, F. Dao, D. A. Levine, R. Giuntoli, et al. (2013)
Science Translational Medicine 5, 167ra4
   Abstract »    Full Text »    PDF »
ARID1A Mutations in Cancer: Another Epigenetic Tumor Suppressor?.
J. N. Wu and C. W. M. Roberts (2013)
Cancer Discovery 3, 35-43
   Abstract »    Full Text »    PDF »
PPP2R1A Mutation Is a Rare Event in Ovarian Carcinoma Across Histological Subtypes.
Anticancer Res 33, 113-118
   Abstract »    Full Text »    PDF »
Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer.
H. Liang, L. W. T. Cheung, J. Li, Z. Ju, S. Yu, K. Stemke-Hale, T. Dogruluk, Y. Lu, X. Liu, C. Gu, et al. (2012)
Genome Res. 22, 2120-2129
   Abstract »    Full Text »    PDF »
Identification of Molecular Pathway Aberrations in Uterine Serous Carcinoma by Genome-wide Analyses.
E. Kuhn, R.-C. Wu, B. Guan, G. Wu, J. Zhang, Y. Wang, L. Song, X. Yuan, L. Wei, R. B. S. Roden, et al. (2012)
J Natl Cancer Inst 104, 1503-1513
   Abstract »    Full Text »    PDF »
Screening for Inhibitors of an Essential Chromatin Remodeler in Mouse Embryonic Stem Cells by Monitoring Transcriptional Regulation.
E. C. Dykhuizen, L. C. Carmody, N. Tolliday, G. R. Crabtree, and M. A. J. Palmer (2012)
J Biomol Screen 17, 1221-1230
   Abstract »    Full Text »    PDF »
A regression model for estimating DNA copy number applied to capture sequencing data.
G. J. Rigaill, S. Cadot, R. J. C. Kluin, Z. Xue, R. Bernards, I. J. Majewski, and L. F. A. Wessels (2012)
Bioinformatics 28, 2357-2365
   Abstract »    Full Text »    PDF »
SWI/SNF Chromatin-remodeling Factors: Multiscale Analyses and Diverse Functions.
J. Biol. Chem. 287, 30897-30905
Gastrointestinal Adenocarcinomas of the Esophagus, Stomach, and Colon Exhibit Distinct Patterns of Genome Instability and Oncogenesis.
A. M. Dulak, S. E. Schumacher, J. van Lieshout, Y. Imamura, C. Fox, B. Shim, A. H. Ramos, G. Saksena, S. C. Baca, J. Baselga, et al. (2012)
Cancer Res. 72, 4383-4393
   Abstract »    Full Text »    PDF »
Reproducible Quantification of Cancer-Associated Proteins in Body Fluids Using Targeted Proteomics.
R. Huttenhain, M. Soste, N. Selevsek, H. Rost, A. Sethi, C. Carapito, T. Farrah, E. W. Deutsch, U. Kusebauch, R. L. Moritz, et al. (2012)
Science Translational Medicine 4, 142ra94
   Abstract »    Full Text »    PDF »
HEAT Repeat 1 Motif Is Required for B56{gamma}-containing Protein Phosphatase 2A (B56{gamma}-PP2A) Holoenzyme Assembly and Tumor-suppressive Function.
Y. Nobumori, G. P. Shouse, L. Fan, and X. Liu (2012)
J. Biol. Chem. 287, 11030-11036
   Abstract »    Full Text »    PDF »
Essential Role of ARID2 Protein-containing SWI/SNF Complex in Tissue-specific Gene Expression.
F. Xu, S. Flowers, and E. Moran (2012)
J. Biol. Chem. 287, 5033-5041
   Abstract »    Full Text »    PDF »
SomaticSniper: identification of somatic point mutations in whole genome sequencing data.
D. E. Larson, C. C. Harris, K. Chen, D. C. Koboldt, T. E. Abbott, D. J. Dooling, T. J. Ley, E. R. Mardis, R. K. Wilson, and L. Ding (2012)
Bioinformatics 28, 311-317
   Abstract »    Full Text »    PDF »
Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer.
A. H. Shain, C. P. Giacomini, K. Matsukuma, C. A. Karikari, M. D. Bashyam, M. Hidalgo, A. Maitra, and J. R. Pollack (2012)
PNAS 109, E252-E259
   Abstract »    Full Text »    PDF »
Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer.
J. I. Wu (2012)
Acta Biochim Biophys Sin 44, 54-69
   Abstract »    Full Text »    PDF »
Molecular Ontogeny of Donor-Derived Follicular Lymphomas Occurring after Hematopoietic Cell Transplantation.
O. Weigert, N. Kopp, A. A. Lane, A. Yoda, S. E. Dahlberg, D. Neuberg, A. Y. Bahar, B. Chapuy, J. L. Kutok, J. A. Longtine, et al. (2012)
Cancer Discovery 2, 47-55
   Abstract »    Full Text »    PDF »
Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways.
J. Wu, Y. Jiao, M. Dal Molin, A. Maitra, R. F. de Wilde, L. D. Wood, J. R. Eshleman, M. G. Goggins, C. L. Wolfgang, M. I. Canto, et al. (2011)
PNAS 108, 21188-21193
   Abstract »    Full Text »    PDF »
ARID1A, a Factor That Promotes Formation of SWI/SNF-Mediated Chromatin Remodeling, Is a Tumor Suppressor in Gynecologic Cancers.
B. Guan, T.-L. Wang, and I.-M. Shih (2011)
Cancer Res. 71, 6718-6727
   Abstract »    Full Text »    PDF »
Human Cancer-Associated Mutations in the A{alpha} Subunit of Protein Phosphatase 2A Increase Lung Cancer Incidence in A{alpha} Knock-In and Knockout Mice.
R. Ruediger, J. Ruiz, and G. Walter (2011)
Mol. Cell. Biol. 31, 3832-3844
   Abstract »    Full Text »    PDF »
Understanding the Enemy.
V. E. Velculescu and L. A. Diaz Jr. (2011)
Science Translational Medicine 3, 98ps37
   Full Text »    PDF »
Cancer Epigenetics for the 21st Century: What's Next?.
M. Esteller (2011)
Genes & Cancer 2, 604-606
   Abstract »    Full Text »    PDF »
DDN: a caBIG(R) analytical tool for differential network analysis.
B. Zhang, Y. Tian, L. Jin, H. Li, I.-M. Shih, S. Madhavan, R. Clarke, E. P. Hoffman, J. Xuan, L. Hilakivi-Clarke, et al. (2011)
Bioinformatics 27, 1036-1038
   Abstract »    Full Text »    PDF »
Exploring the Genomes of Cancer Cells: Progress and Promise.
M. R. Stratton (2011)
Science 331, 1553-1558
   Abstract »    Full Text »    PDF »
New Epigenetic Drivers of Cancers.
S. J. Elsasser, C. D. Allis, and P. W. Lewis (2011)
Science 331, 1145-1146
   Abstract »    Full Text »    PDF »
Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation.
D. B. Yap, J. Chu, T. Berg, M. Schapira, S.- W. G. Cheng, A. Moradian, R. D. Morin, A. J. Mungall, B. Meissner, M. Boyle, et al. (2011)
Blood 117, 2451-2459
   Abstract »    Full Text »    PDF »
The Genetic Landscape of the Childhood Cancer Medulloblastoma.
D. W. Parsons, M. Li, X. Zhang, S. Jones, R. J. Leary, J. C.-H. Lin, S. M. Boca, H. Carter, J. Samayoa, C. Bettegowda, et al. (2011)
Science 331, 435-439
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882